Citation: | SHI Haiwang, DUAN Rui, LIU Chengyi. The Effect of Electrical Stimulation on Weightlessness-Caused Waste Skeletal Muscular Atrophy[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 57-66. DOI: 10.6054/j.jscnun.2020095 |
[1] |
MCKINNELL I W, RUDNICKI M A. Molecular mechanisms of muscle atrophy[J]. Cell, 2004, 119(7):907-910. http://europepmc.org/abstract/med/15620349
|
[2] |
BOONYAROM O, INUI K. Atrophy and hypertrophy of skeletal muscles:structural and functional aspects[J]. Acta Physiologica (Oxf), 2006, 188(2):77-89. http://europepmc.org/abstract/MED/16948795
|
[3] |
BONALDO P, SANDRI M. Cellular and molecular mechanisms of muscle atrophy[J]. Disease Model Mechanisms, 2013, 6(1):25-39. http://pubmedcentralcanada.ca/pmcc/articles/PMC3529336/
|
[4] |
LATRES E, AMINI A R, AMINI A A, et al. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway[J]. Journal of Biological Chemistry, 2005, 280(4):2737-2744. http://hmg.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=jbc&resid=280/4/2737
|
[5] |
SCHIAFFINO S, MAMMUCARI C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway:insights from genetic models[J]. Skelet Muscle, 2011, 1(1):4-17. doi: 10.1186/2044-5040-1-4
|
[6] |
RATTI F, RAMOND F, MONCOLLIN V, et al. Histone deacetylase 6 is a FoxO transcription factor-dependent effector in skeletal muscle atrophy[J]. Journal of Biological Chemistry, 2015, 290(7):4215-4224. http://www.ncbi.nlm.nih.gov/pubmed/25516595
|
[7] |
BODINE S C, LATRES E, BAUMHUETER S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy[J]. Science, 2001, 294(5547):1704-1708. http://www.ncbi.nlm.nih.gov/pubmed/11679633/
|
[8] |
SANDRI M. FOXOphagy path to inducing stress resistance and cell survival[J]. Nature Cell Biology, 2012, 14(8):786-788. http://www.nature.com/articles/ncb2550
|
[9] |
ZHAO J, BRAULT J J, SCHILD A, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells[J]. Cell Metablism, 2007, 6(6):472-483. http://europepmc.org/abstract/med/18054316
|
[10] |
MCPHERRON A C, LAWLER A M, LEE S J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member[J]. Nature, 1997, 387(6628):83-90. http://www.tandfonline.com/servlet/linkout?suffix=CIT0031&dbid=8&doi=10.3109%2F08977194.2011.599324&key=9139826
|
[11] |
EKEN T. Spontaneous electromyographic activity in adult rat soleus muscle[J]. Journa of Neurophysiology, 1998, 80(1):365-376. http://www.ncbi.nlm.nih.gov/pubmed/9658057
|
[12] |
PETTERSON S, SNYDER-MACKLER L. The use of neuromuscular electrical stimulation to improve activation deficits in a patient with chronic quadriceps strength impairments following total knee arthroplasty[J]. Journal of Orthopaedic and Sports Physical Therapy, 2006, 36(9):678-685. http://labs.europepmc.org/abstract/MED/17017273
|
[13] |
DUPONT SALTER A C, RICHMOND F J, LOEB G E. Prevention of muscle disuse atrophy by low-frequency electrical stimulation in rats[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(3):218-226. http://europepmc.org/abstract/MED/14518784
|
[14] |
NAKAGAWA K, TAMAKI H, HAYAO K, et al. Electrical stimulation of denervated rat skeletal muscle retards capillary and muscle loss in early stages of disuse atrophy[J]. BioMed Research International, 2017, 56(9):521-527. http://europepmc.org/abstract/MED/28497057
|
[15] |
TANAKA M, HIRAYAMA Y, FUJITA N, et al. Electrical stimulation using sine waveform prevents unloading-induced muscle atrophy in the deep calf muscles of rat[J]. Acta Histochemica, 2014, 116(7):1192-1198. http://www.ncbi.nlm.nih.gov/pubmed/25028130
|
[16] |
陈杰, 马进, 丁兆平.一种模拟长期失重影响的大鼠尾部悬吊模型[J].空间科学学报, 1993, 13(2):159-162. http://www.cnki.com.cn/Article/CJFDTotal-KJKB199302011.htm
CHEN J, MA J, DING Z P, et al. A modified tail-suspension model for simulating long-term weightlessness[J]. Chinese Journal of Space Science, 1993, 13(2):159-162. http://www.cnki.com.cn/Article/CJFDTotal-KJKB199302011.htm
|
[17] |
LIU T C, TANG X M, DUAN R, et al. The mitochondrial Na(+)/Ca(2+) exchanger is necessary but not sufficient for Ca(2+) homeostasis and viability[J]. Advances in Experimental Medicine and Biology, 2018, 1072:281-285. http://www.ncbi.nlm.nih.gov/pubmed/30178359
|
[18] |
LIU T C, LIU G, HU S J, et al. Quantitative biology of exercise-induced signal transduction pathways[J]. Advances in Experimental Medicine and Biology, 2017, 977:419-424. http://europepmc.org/abstract/MED/28685473
|
[19] |
TALEB N N. The black swan :the impact of the highly improbable[M]. Revised Edition. London:Allen Lane, 2011.
|
[20] |
FECHNER G T, ADLER H E, HOWES D H, et al. Elements of psychophysics[M]. New York:Holt, Rinehart and Winston, 1966.
|
[21] |
刘承宜, 胡少娟, 李晓云.定量差异及其在体育科学中的应用[J].体育学刊, 2016, 23(1):11-17.
LIU C Y, HU S J, LI X Y. Quantitative difference and its application in sports science[J]. Journal of Physical Education, 2016, 23(1):11-17.
|
[22] |
SUN S S, HU C L, PAN J H, et al. Trait mindfulness is associated with the self-similarity of heart rate variability[J]. Frontiers in Psychology, 2019(10):314/1-11. http://www.ncbi.nlm.nih.gov/pubmed/30873070
|
[23] |
刘承宜, 朱玲, 李方晖.自相似常数和定量差异及其在体育科学中的应用[J].体育学刊, 2017, 151(6):78-84. http://d.wanfangdata.com.cn/periodical/tyxk201706015
LIU C Y, ZHU L, LI F H. Self-similar constant and quantitative difference as well as their applications in sports science[J]. Journal of Physical Education, 2017, 151(6):78-84. http://d.wanfangdata.com.cn/periodical/tyxk201706015
|
[24] |
刘承宜, 杨罗丹, 吴冲云.慢性膝关节疼痛针刺治疗的表型组学再分析[J].中国科技论文在线精品论文, 2017, 10(15):1780-1785.
LIU C Y, YANG L D, WU C Y, et al. Phenomics reanalysis on therapeutic effects of acupuncture on chronic knee pain[J]. Highlights of Sciencepaper Online, 2017, 10(15):1780-1785.
|
[25] |
ZHANG P, CHEN X, FAN M. Signaling mechanisms involved in disuse muscle atrophy[J]. Medical Hypotheses, 2007, 69(2):310-321. http://europepmc.org/abstract/MED/17376604
|
[26] |
高久翔, 张宇纯, 于亮.电针对小鼠下肢肌萎缩干预效果的研究[J].中国康复医学杂志, 2018(3):280-285. http://www.cqvip.com/QK/90850X/201803/674849038.html
GAO J X, ZHANG Y C, YU L. Electric acupuncture intervention on the effects of disuse muscular atrophy muscle fiber types of mice[J]. Chinese Journal of Rehabilitation Medicine, 2018(3):280-285. http://www.cqvip.com/QK/90850X/201803/674849038.html
|
[27] |
黄惠芝.红景天苷对COPD大鼠骨骼肌的保护作用及与PI3K/Akt/mTOR的关系[D].衡阳: 南华大学, 2017.
HUANG H Z. The effect of salidrosidein protecting skeletal muscle in rats with chronic obstructive pulmonary disease and the relationship with PI3K/AKT/mTOR[D].Hengyang: University of South China, 2017.
|
[28] |
任晋华, 梁炳生, 彭春辉. FoXO3a通路调控失神经肌萎缩的作用机制及银杏叶提取物的治疗作用[J].中国医疗前沿, 2012, 7(3):42-44. http://d.wanfangdata.com.cn/Thesis/Y2126713
REN J H, LIANG B S, PENG C H. The modulating mechanism of FoXO3a in denervated skeletal muscle atrophy in rats and the treating effects of the extract of Ginkgo Biloba(EGB761)[J]. National Medical Frontiers of China, 2012, 7(3):42-44. http://d.wanfangdata.com.cn/Thesis/Y2126713
|
1. |
管钰晴,唐冬梅,傅云霞,孙佳媛,韩志国,张波,孔明,曹程明,雷李华. 穆勒椭偏标定方法中LM算法研究. 红外与激光工程. 2020(08): 168-176 .
![]() | |
2. |
汪娟,冀丽娜,白芸,黄佐华. 单波长椭偏法测量各向异性晶体光学参数的研究. 激光与光电子学进展. 2020(15): 224-232 .
![]() |