Citation: | QIU Wei, CHEN Yihong. The Relationship between LvCTL1 and WSSV Replication[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 52-56. DOI: 10.6054/j.jscnun.2020094 |
[1] |
ASCHE F, ANDERSON J L, BOTTA R, et al. The economics of shrimp disease[J]. Journal of Invertebrate Pathology, 2020:107397/1-9.
|
[2] |
LI C Z, WANG S, HE J G. The two NF-κB pathways regulating bacterial and WSSV infection of shrimp[J]. Frontiers in Immunology, 2019, 10:1785/1-26.
|
[3] |
SANCHEZ-PAZ A. White spot syndrome virus:an overview on an emergent concern[J]. Veterinary Research, 2010, 41(6):43/1-34.
|
[4] |
SONG F, CHEN G L, LU K C, et al. Identification and functional characterization of a C-type lectin gene from Litopenaeus vannamei that is associated with ER-stress response[J]. Fish and Shellfish Immunology, 2019, 41:977-985.
|
[5] |
WANG X W, WANG J X. Crustacean hemolymph microbiota:endemic, tightly controlled, and utilization expectable[J]. Molecular Immunology, 2015, 68(2):404-411.
|
[6] |
HUANG Y, REN Q. Research progress in innate immunity of freshwater crustaceans[J]. Developmental and Comparative Immunology, 2020, 104:103569/1-9.
|
[7] |
ZHAO Z Y, YIN Z X, XU X P, et al. A novel C-type lectin from the shrimp Litopenaeus vannamei possesses anti-white spot syndrome virus activity[J]. Journal of Virology, 2009, 41(1):347-356.
|
[8] |
QIU W, ZHANG S, CHEN Y G, et al. Litopenaeus vannamei NF-κB is required for WSSV replication[J]. Developmental and Comparative Immunology, 2014, 45(1):156-162.
|
[9] |
PFAFFL M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research. 2001, 29(9):e45/1-6.
|
[10] |
ROBALINO J, BROWDY C L, PRIOR S, et al. Induction of antiviral immunity by double-stranded RNA in a marine invertebrate[J]. Journal of Virology, 2004, 78(19):10442-10448.
|
[11] |
WANG Y G, HASSAN M D, SHARIFF M, et al. Histopathology and cytopathology of white spot syndrome virus(WSSV) in cultured Penaeus monodon from peninsular Malaysia with emphasis on pathogenesis and the mechanism of white spot formation[J]. Diseases of Aquatic Organisms, 1999, 39(1):1-11.
|
[12] |
VAN HULTEN M C, WITTEVELDT J, SNIPPE M, et al. White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp[J]. Virology, 2001, 285(2):228-233.
|
[13] |
WITTEVELDT J, CIFUENTES C C, VLAK J M, et al. Protection of Penaeus monodon against white spot syndrome virus by oral vaccination[J]. Journal of Virology, 2004, 78(4):2057-2061.
|
[14] |
WAN F, LENARDO M J. The nuclear signaling of NF-kappa B:current knowledge, new insights, and future perspectives[J]. Cell Research, 2010, 20(1):24-33.
|
[15] |
OECKINGHAUS A, HAYDEN M S, GHOSH S. Crosstalk in NF-κB signaling pathways[J]. Nature Immunology, 2011, 12(8):695-708.
|
[16] |
SURABHI R M, GAYNOR R B. RNA interference directed against viral and cellular targets inhibits human immunodeficiency Virus Type 1 replication[J]. Journal of Virology, 2002, 76(24):12963-12973.
|
[17] |
WEST M J, LOWE A D, KARN J. Activation of human immunodeficiency virus transcription in T cells revisited:NF-kappa B p65 stimulates transcriptional elongation[J]. Journal of Virology, 2001, 75(18):8524-8537.
|
[18] |
SAKAKIBARA S, SAKAKIBARA K, TOSATO G. NF-kappa B activation stimulates transcription and replication of retrovirus XMRV in human B-lineage and prostate carcinoma cells[J]. Journal of Virology, 2011, 85(7):3179-3186.
|
[19] |
HUANG X D, YIN Z X, LIAO J X, et al. Identification and functional study of a shrimp Relish homologue[J]. Fish and Shellfish Immunolog, 2009, 27(2):230-238.
|
[20] |
HUANG X D, YIN Z X, JIA X T, et al. Identification and functional study of a shrimp dorsal homologue[J]. Developmental and Comparative Immunology, 2010, 34(2):107-113.
|
1. |
聂萌瑶,刘鑫. 考虑最大通信量的物联网群体访问路由算法. 计算机仿真. 2024(02): 415-419 .
![]() |