Citation: | CHEN Kexin, LI Lifeng, WANG Xi, LI Laisheng. The Preparation of Z-Scheme Cu2O-(rGO-TiO2) Photocatalyst and Its Performance in Methyl Orange Degradation[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 45-51. DOI: 10.6054/j.jscnun.2020093 |
[1] |
洪俊明, 洪华生, 熊小京, 等. A/O膜生物反应器组合工艺处理活性染料废水的实验研究[J].厦门大学学报(自然科学版), 2005, 44(3):441-444.
HONG J M, HONG H S, XIONG X J, et al. Experimental study on reactive dye wastewater treatment by a combined anaerobic aerobic membrane bioreactor processes[J]. Journal of Xiamen University (Natural Science), 2005, 44(3):441-444.
|
[2] |
李庄, 曾光明, 高兴斋.偶氮染料废水处理研究现状及其发展方向[J].精细化工中间体, 2000(6):12-15.
LI Z, ZENG G M, GAO X Z. Summary on the treatment of wastewater from azo dye[J]. Find Chemical Intermediates, 2000(6):12-15.
|
[3] |
BROWN D, LABOUREUR P. The degradation of dyestuffs:Part Ⅰ Primary biodegradation under anaerobic conditions[J]. Chemosphere, 1983, 12(3):397-404.
|
[4] |
王静, 马红竹.高锰酸钾改性无机-有机膨润土的制备及其对甲基橙废水的氧化降解[C]//中国化学会学术年会论文集.成都: 中国化学会, 2012.
WANG J, MA H Z. Preparation of a potassium permanganate-modified inorganic-organic bentonite and Its application in methyl orange water treatment[C]//Proceedings of the 28th Chinese Chemical Society Congress. Chengdu: Chinese Chemical Society, 2012.
|
[5] |
TOSINE H M, LAWRENCE J, CAREY J H. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination & Toxicology, 1976, 16(6):697-701.
|
[6] |
ZENG Q X, XU G C, ZHANG L, et al. Porous Cu2O microcubes derived from a metal-formate framework as photocatalyst for degradation of methyl orange[J]. Materials Research Bulletin, 2019, 119:110537/1-4. http://www.sciencedirect.com/science/article/pii/S0025540818334287
|
[7] |
LU L, SHAN R, SHI Y, et al. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange[J]. Chemosphere, 2019, 222:391-398.
|
[8] |
THOMPSON T L, YATES J J. Surface science studies of the photoactivation of TiO2-new photochemical processes[J]. 2006, 38(1): 4428-4453.
|
[9] |
方方, 张旭. Cu2O/TiO2异质结构纳米材料的合成及其光催化降解甲基橙的研究[J].哈尔滨师范大学自然科学学报, 2019, 35(4):75-78. http://www.cnki.com.cn/Article/CJFDTotal-HEBY201904013.htm
FANG F, ZHANG X. The research on the synthesis of Cu2O/TiO2 heterostructure nanomaterials and their photocatalytic degradation of methyl orange[J]. Natural Science Journal of Harbin Normal University, 2019, 35(4):75-78. http://www.cnki.com.cn/Article/CJFDTotal-HEBY201904013.htm
|
[10] |
HILL R, BENDALL F. Function of the two cytochrome components in chloroplasts:a working hypothesis[J]. Nature, 1960, 186:136-137. http://pcp.oxfordjournals.org/external-ref?access_num=10.1038/186136a0&link_type=DOI
|
[11] |
AGUIRRE M E, ZHOU R X, EUGENE A J, et al. Cu2O/ TiO2 heterostructures for CO2 reduction through a direct Z-scheme: protecting Cu2O from photocorrosion[J]. Applied Catalysis B:Environmental, 2017, 217:485-493.
|
[12] |
MENG A Y, ZHU B C, ZHONG B, et al. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J]. Applied Surface Science, 2017, 422:518-527.
|
[13] |
HU Z, WANG X, DONG H T, et al. Efficient photocatalytic degradation of tetrabromodiphenyl ethers and simultaneous hydrogen production by TiO2-Cu2O composite films in N2, atmosphere:influencing factors, kinetics and mechanism[J]. Journal of Hazardous Materials, 2017, 340:1-15.
|
[14] |
LIU L, LIN S L, HU J S, et al. Plasmon-enhanced photocatalytic properties of nano Ag@ AgBr on single-crystalline octahedral Cu2O(111) microcrystals composite photocatalyst[J]. Applied Surface Science, 2015, 330:94-103.
|
[15] |
KASHINATH L, NAMRATHA K, BYRAPPA K. Sol-gel assisted hydrothermal synthesis and characterization of hybrid ZnS-rGO nanocomposite for efficient photodegradation of dyes[J]. Journal of Alloys and Compounds, 2017, 695:799-809.
|
[16] |
XU L, JIANG L P, ZHU J J. Sonochemical synthesis and photocatalysis of porous Cu2O nanospheres with controllable structures[J]. Nanotechnology, 2008, 20(4):045605/1-5.
|
[17] |
LIU M, PIAO L, LU W, et al. Flower-like TiO2 nanostructures with exposed {001} facets:facile synthesis and enhanced photocatalysis[J]. Nanoscale, 2010, 2(7):1115-1117.
|
[18] |
XI Z, LI C, ZHANG L, et al. Synergistic effect of Cu2O/TiO2 heterostructure nanoparticle and its high H2 evolution activity[J]. International Journal of Hydrogen Energy, 2014, 39(12):6345-6353.
|
[19] |
LI X Z, LI F B, YANG C L, et al. Photocatalytic activity of WOx-TiO2 under visible light irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2001, 141(2/3):209-217.
|
[20] |
CHEN F, YANG Q, ZHONG Y, et al. Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (rGO) jointly modified BiVO4 under visible light irradiation[J]. Water Research, 2016, 101:555-563.
|
[21] |
INIESTA J, MICHAUD P A, PANIZZA M, et al. Electrochemical oxidation of phenol at boron-doped diamond electrode[J]. Electrochimica Acta, 2001, 46(23):3573-3578.
|
[22] |
李慧泉, 陈伟凡, 马继龙, 等.掺杂Yb的TiO2光催化剂的制备和性能[J].影像科学与光化学, 2005, 23(6):453-459.
LI H Q, CHEN W F, MA J L, et al. Preparation and properties of Yb doped TiO2 photocatalysts[J]. Photographic Science and Photochemistry, 2005, 23(6):453-459.
|