Citation: | ZHAO Shaofei, LIU Peng, LI Wanping, ZENG Xiaohong, YU Lin, ZENG Huaqiang. Preparation of Ni3S2-Ni@Ni Foam Electrode and Its Pseudocapacitance Properties[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 28-33. DOI: 10.6054/j.jscnun.2020090 |
[1] |
SALUNKHE R R, TANG J, KAMACHI Y, et al. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework[J]. ACS Nano, 2015, 9:6288-6296. http://europepmc.org/abstract/MED/25978143
|
[2] |
YU Z Y, CHENG Z X, WANG X L, et al. High area-specific capacitance of Co(OH)2/hierarchical nickel/nickel foam supercapacitors and its increase with cycling[J]. Journal of Materials Chemistry A, 2017, 5:7968-7978. http://www.researchgate.net/publication/315922177_High_area-specific_capacitance_of_CoOH2hierarchical_nickel_nickel_foam_supercapacitor_and_increase_with_cycling
|
[3] |
ZHAO S F, ZENG L Z, CHENG G, et al. Ni/Co-based metal-organic frameworks as electrode material for high performance supercapacitors[J]. Chinese Chemical Letters, 2019, 30:605-609.
|
[4] |
WANG Y, YIN Z L, WANG Z X, et al. Facile construction of Co(OH)2@Ni(OH)2 core-shell nanosheets on nickel foam as three dimensional free-standing electrode for supercapacitors[J]. Electrochimica Acta, 2019, 293:40-46. http://www.sciencedirect.com/science/article/pii/S0013468618322503
|
[5] |
BAI X, LIU Q, LIU J, et al. Hierarchical Co3O4@Ni(OH)2 core-shell nanosheet arrays for isolated all-solid state supercapacitor electrodes with superior electrochemical performance[J]. Chemical Engineering Journal, 2017, 315:35-45.
|
[6] |
KIM D, KANNAN P K, MATETI S, et al. Indirect nanoconstruction morphology of Ni3S2 electrodes renovates the performance for electrochemical energy storage[J]. ACS Applied Energy Materials, 2018, 1:6945-6952. doi: 10.1021/acsaem.8b01310
|
[7] |
ZHU Y, WANG F, ZHANG H, et al. PPy@NiCo2S4 nanosheets anchored on graphite foam with bicontinuous conductive network for high-areal capacitance and high-rate electrodes[J]. Journal of Alloys and Compounds, 2018, 747:276-282. http://www.sciencedirect.com/science/article/pii/S0925838818308442
|
[8] |
TRAN V C, SAHOO S, SHIM J J. Room-temperature synthesis of NiS hollow spheres on nickel foam for high-performance supercapacitor electrodes[J]. Materials Letters, 2018, 210:105-108. http://www.sciencedirect.com/science/article/pii/S0167577X17313344
|
[9] |
WANG N, HAN G Y, CHANG Y Z, et al. Preparing Ni3S2 composite with neural network-like structure for high-performance flexible asymmetric supercapacitors[J]. Electrochimica Acta, 2019, 317:322-332. http://www.sciencedirect.com/science/article/pii/S0013468619311387
|
[10] |
LI S, WEN J, CHEN T, et al. In situ synthesis of 3D CoS nanoflake/Ni(OH)2 nanosheet nanocomposite structure as a candidate supercapacitor electrode[J]. Nanotechno-logy, 2016, 27:145401/1-9. http://europepmc.org/abstract/MED/26905933
|
[11] |
CAO F, ZHAO M, YU Y, et al. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application[J]. Journal of the American Chemical Society, 2016, 138:6924-6927.
|
[12] |
SHI B B, SARAVANAKUMAR B, WEI W, et al. 3D honeycomb NiCo2S4@Ni(OH)2 nanosheets for flexible all-solid-state asymmetric supercapacitors with enhanced specific capacitance[J]. Journal of Alloys and Compounds, 2019, 790:693-702. http://www.sciencedirect.com/science/article/pii/S092583881931031X
|
[13] |
LIU Y P, LI Z L, YAO L, et al. Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2019, 366:550-559. http://www.sciencedirect.com/science/article/pii/S1385894719303560
|
[14] |
LI J, WANG S L, XIAO T, et al. Controllable preparation of nanoporous Ni3S2 films by sulfuration of nickel foam as promising asymmetric supercapacitor electrodes[J]. Applied Surface Science, 2017, 420:919-926. http://adsabs.harvard.edu/abs/2017ApSS..420..919L
|
[15] |
KRISHNAMOORTHY K, VEERASUBRAMANI G K, RADH-AKRISHNAN S, et al. One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application[J]. Chemical Engineering Journal, 2014, 251:116-122. http://www.sciencedirect.com/science/article/pii/S1385894714004343
|
[16] |
CHEN J S, GUAN C, GUI Y, et al. Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density[J]. ACS Applied Materials & Interfaces, 2017, 9:496-504. doi: 10.1021/acsami.6b14746
|
[17] |
赵少飞, 刘鹏, 李婉萍, 等.一步电沉积法制备硫化镍/泡沫镍材料及其赝电容性能研究[J].化工学报, 2020, 71(4):1836-1843. http://www.cnki.com.cn/Article/CJFDTotal-HGSZ202004044.htm
ZHAO S F, LIU P, LI W P, et al. One-step electrodeposition and pseudocapacitance properties of 3D Ni3S2 supported on Ni foam[J]. CIESC Journal, 2020, 71(4):1836-1843. http://www.cnki.com.cn/Article/CJFDTotal-HGSZ202004044.htm
|
[18] |
FENG N, HU D K, WANG P, et al. Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15:9924-9930. http://www.ncbi.nlm.nih.gov/pubmed/23673428
|
[19] |
JIANG H, GUO Y, WANG T, et al. Electrochemical fabrication of Ni(OH)2/Ni 3D porous composite films as integrated capacitive electrodes[J]. RSC Advances, 2015, 5:12931-12936. http://pubs.rsc.org/en/content/articlepdf/2015/ra/c4ra15092a
|
[20] |
LI Y J, YE K, CHENG K, et al. Electrodeposition of nickel sulfide on graphene-covered make-up cotton as a flexible electrode material for high-performance supercapacitors[J]. Journal of Power Sources, 2015, 274:943-950. http://www.sciencedirect.com/science/article/pii/S0378775314017753
|