• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WANG Penglei, AN Yabin, GENG Linbin, SUN Xianzhong, ZHANG Xiong, MA Yanwei. The Ethylene Carbonate-Based Electrolyte of Lithium-Ion Capacitors[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 22-27. DOI: 10.6054/j.jscnun.2020089
Citation: WANG Penglei, AN Yabin, GENG Linbin, SUN Xianzhong, ZHANG Xiong, MA Yanwei. The Ethylene Carbonate-Based Electrolyte of Lithium-Ion Capacitors[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 22-27. DOI: 10.6054/j.jscnun.2020089

The Ethylene Carbonate-Based Electrolyte of Lithium-Ion Capacitors

More Information
  • Received Date: May 11, 2020
  • Available Online: January 04, 2021
  • Soft-packaged lithium ion capacitors (LICs) with activated carbon and soft carbon were assembled using two kinds of ethylene carbonate-based organic electrolytes. Their electrochemical performance, including DC internal resistance, C-rate, impedance spectra and cycleability, was studied. The results showed that the LICs with the lithium bis(fluorosulfonyl)imide salt (1.2 mol/L LiFSI : (EC/PC/DEC), which was obtained by adding propylene carbonate (PC) to the mixed solvent of ethylene carbonate (EC) and diethylene carbonate (DEC), possess lower internal resistance, better rate capability and higher low temperature performance. This can be significant for developing electrolytes for low internal resistance and low-temperature LICs.
  • [1]
    SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11):845-854. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000018000019000060000001&idtype=cvips&gifs=Yes
    [2]
    高国梁, 王德宇, 曾群, 等. Cu-MOF/rGO锂离子电池负极材料的制备及电化学性能[J].华南师范大学学报(自然科学版), 2018, 50(2):34-37. doi: 10.6054/j.jscnun.2018048
    [3]
    SUN C, ZHANG X, LI C, et al. High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance[J]. Energy Storage Materials, 2020, 24:160-166. http://www.sciencedirect.com/science/article/pii/S2405829719309389
    [4]
    ZHAO X, ZHANG X, LI C, et al. High-performance lithium-ion capacitors based on CoO-Graphene composite anode and holey carbon nanolayer cathode[J]. ACS Sustainable Chemistry & Engineering, 2019, 7:11275-11283. doi: 10.1021/acssuschemeng.9b00641
    [5]
    孙现众, 张熊, 王凯, 等.高能量密度的锂离子混合型电容器[J].电化学, 2017, 23(5):586-603. http://www.cqvip.com/QK/98279X/20175/673743961.html

    SUN X Z, ZHANG X, WANG K, et al. Lithium ion hybrid capacitor with high energy density[J]. Journal of Electrochemistry, 2017, 23(5):586-603. http://www.cqvip.com/QK/98279X/20175/673743961.html
    [6]
    张进, 王静, 时志强.炭基锂离子电容器的研究进展[J].储能科学与技术, 2016, 5(6):807-815. http://d.wanfangdata.com.cn/Periodical/cnkxyjs201606006

    ZHANG J, WANG J, SHI Z Q. Research progress of carbon-based lithium ion capacitor[J]. Energy Storage and Technology, 2016, 5(6):807-815. http://d.wanfangdata.com.cn/Periodical/cnkxyjs201606006
    [7]
    鲍恺婧, 蔡亚果, 朴贤卿.低温锂离子电池的研究进展[J].电池, 2019, 49(5):1001-1579. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DACI201905023

    BAO K J, CAI Y G, PIAO X Q. Research progress in low temperature Li-ion battery[J]. Battery Bimonthly, 2019, 49(5):1001-1579. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DACI201905023
    [8]
    穆德颖, 刘元龙, 戴长松.锂离子电池液态有机电解液的研究进展[J].电池, 2019, 49(1):68-71. http://www.cnki.com.cn/Article/CJFDTotal-DACI201901019.htm

    MU D Y, LIU Y L, DAI C S. Research progress in liquid organic electrolyte for Li-ion battery[J]. Battery, 2019, 49(1):68-71. http://www.cnki.com.cn/Article/CJFDTotal-DACI201901019.htm
    [9]
    YU X, DENG J, ZHAN C, et al. A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes[J]. Electrochimica Acta, 2017, 228:76-81. http://www.sciencedirect.com/science/article/pii/S0013468617300592
    [10]
    JAIN A, ARAVINDAN V, JAYARAMAN S, et al. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors[J]. Scientific Reports, 2013, 3:3002/1-6. http://europepmc.org/articles/PMC3801125/
    [11]
    XU N, SUN X, ZHAO F, et al. The role of pre-lithiation in activated carbon/Li4Ti5O12 asymmetric capacitors[J]. Electrochimica Acta, 2017, 236:443-450. http://www.sciencedirect.com/science/article/pii/S0013468617306989
    [12]
    SUN X, ZHANG X, LIU W, et al. Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor[J]. Electrochimica Acta, 2017, 235:158-166. http://www.sciencedirect.com/science/article/pii/S001346861730590X
    [13]
    SUN X, ZHANG X, ZHANG H, et al. High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes[J]. Journal of Power Sources, 2014, 270:318-325. http://www.sciencedirect.com/science/article/pii/S0378775314012002
    [14]
    LI Z, SUN X Z, LIU W J, et al. A Comparative study of pre-lithiated hard carbon and soft carbon as anodes for lithium-ion capacitor[J]. Journal of Electrochemistry, 2019, 25(1):125-139. http://en.cnki.com.cn/Article_en/CJFDTotal-DHXX201901011.htm
    [15]
    SUN X, ZHANG X, ZHANG H, et al. Application of a novel binder for activated carbon-based electrical double layer capacitors with nonaqueous electrolytes[J]. Journal of Solid State Electrochemistry, 2013, 17(7):2035-2042. doi: 10.1007/s10008-013-2051-1
    [16]
    ZHANG Y, LIU Z, SUN X, et al. Experimental study of thermal charge-discharge behaviors of pouch lithium-ion capacitors[J]. Energy Storage, 2019, 25:100902/1-9. http://www.sciencedirect.com/science/article/pii/S2352152X19304232
    [17]
    SUN X, AN Y, GENG L, et al. Leakage current and self-discharge in lithium-ion capacitor[J]. Journal of Electroanalytical Chemistry, 2019, 850:113386/1-7. http://www.sciencedirect.com/science/article/pii/S157266571930654X
    [18]
    SUN X, ZHANG X, WANG K, et al. Temperature effect on electrochemical performances of Li-ion hybrid capacitors[J]. Journal of Solid State Electrochemistry, 2015, 19(8):2501-2506. doi: 10.1007/s10008-015-2876-x
    [19]
    MANDAL B K, PADHI A K, SHI Z, et al. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2006, 162:690-695. http://www.sciencedirect.com/science/article/pii/S0378775306012006
    [20]
    YAMADA Y, WANG J, KO S, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019, 4:469-480. http://www.nature.com/articles/s41560-019-0375-5
    [21]
    ZHENG Q, YAMADA Y, SHANG R, et al. A cyclic phosphate-based battery electrolyte for high voltage and safe operation[J]. Nature Energy, 2020, 5:291-298. http://www.nature.com/articles/s41560-020-0567-z

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return