Citation: | WANG Penglei, AN Yabin, GENG Linbin, SUN Xianzhong, ZHANG Xiong, MA Yanwei. The Ethylene Carbonate-Based Electrolyte of Lithium-Ion Capacitors[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 22-27. DOI: 10.6054/j.jscnun.2020089 |
[1] |
SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11):845-854. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000018000019000060000001&idtype=cvips&gifs=Yes
|
[2] |
高国梁, 王德宇, 曾群, 等. Cu-MOF/rGO锂离子电池负极材料的制备及电化学性能[J].华南师范大学学报(自然科学版), 2018, 50(2):34-37. doi: 10.6054/j.jscnun.2018048
|
[3] |
SUN C, ZHANG X, LI C, et al. High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance[J]. Energy Storage Materials, 2020, 24:160-166. http://www.sciencedirect.com/science/article/pii/S2405829719309389
|
[4] |
ZHAO X, ZHANG X, LI C, et al. High-performance lithium-ion capacitors based on CoO-Graphene composite anode and holey carbon nanolayer cathode[J]. ACS Sustainable Chemistry & Engineering, 2019, 7:11275-11283. doi: 10.1021/acssuschemeng.9b00641
|
[5] |
孙现众, 张熊, 王凯, 等.高能量密度的锂离子混合型电容器[J].电化学, 2017, 23(5):586-603. http://www.cqvip.com/QK/98279X/20175/673743961.html
SUN X Z, ZHANG X, WANG K, et al. Lithium ion hybrid capacitor with high energy density[J]. Journal of Electrochemistry, 2017, 23(5):586-603. http://www.cqvip.com/QK/98279X/20175/673743961.html
|
[6] |
张进, 王静, 时志强.炭基锂离子电容器的研究进展[J].储能科学与技术, 2016, 5(6):807-815. http://d.wanfangdata.com.cn/Periodical/cnkxyjs201606006
ZHANG J, WANG J, SHI Z Q. Research progress of carbon-based lithium ion capacitor[J]. Energy Storage and Technology, 2016, 5(6):807-815. http://d.wanfangdata.com.cn/Periodical/cnkxyjs201606006
|
[7] |
鲍恺婧, 蔡亚果, 朴贤卿.低温锂离子电池的研究进展[J].电池, 2019, 49(5):1001-1579. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DACI201905023
BAO K J, CAI Y G, PIAO X Q. Research progress in low temperature Li-ion battery[J]. Battery Bimonthly, 2019, 49(5):1001-1579. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DACI201905023
|
[8] |
穆德颖, 刘元龙, 戴长松.锂离子电池液态有机电解液的研究进展[J].电池, 2019, 49(1):68-71. http://www.cnki.com.cn/Article/CJFDTotal-DACI201901019.htm
MU D Y, LIU Y L, DAI C S. Research progress in liquid organic electrolyte for Li-ion battery[J]. Battery, 2019, 49(1):68-71. http://www.cnki.com.cn/Article/CJFDTotal-DACI201901019.htm
|
[9] |
YU X, DENG J, ZHAN C, et al. A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes[J]. Electrochimica Acta, 2017, 228:76-81. http://www.sciencedirect.com/science/article/pii/S0013468617300592
|
[10] |
JAIN A, ARAVINDAN V, JAYARAMAN S, et al. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors[J]. Scientific Reports, 2013, 3:3002/1-6. http://europepmc.org/articles/PMC3801125/
|
[11] |
XU N, SUN X, ZHAO F, et al. The role of pre-lithiation in activated carbon/Li4Ti5O12 asymmetric capacitors[J]. Electrochimica Acta, 2017, 236:443-450. http://www.sciencedirect.com/science/article/pii/S0013468617306989
|
[12] |
SUN X, ZHANG X, LIU W, et al. Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor[J]. Electrochimica Acta, 2017, 235:158-166. http://www.sciencedirect.com/science/article/pii/S001346861730590X
|
[13] |
SUN X, ZHANG X, ZHANG H, et al. High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes[J]. Journal of Power Sources, 2014, 270:318-325. http://www.sciencedirect.com/science/article/pii/S0378775314012002
|
[14] |
LI Z, SUN X Z, LIU W J, et al. A Comparative study of pre-lithiated hard carbon and soft carbon as anodes for lithium-ion capacitor[J]. Journal of Electrochemistry, 2019, 25(1):125-139. http://en.cnki.com.cn/Article_en/CJFDTotal-DHXX201901011.htm
|
[15] |
SUN X, ZHANG X, ZHANG H, et al. Application of a novel binder for activated carbon-based electrical double layer capacitors with nonaqueous electrolytes[J]. Journal of Solid State Electrochemistry, 2013, 17(7):2035-2042. doi: 10.1007/s10008-013-2051-1
|
[16] |
ZHANG Y, LIU Z, SUN X, et al. Experimental study of thermal charge-discharge behaviors of pouch lithium-ion capacitors[J]. Energy Storage, 2019, 25:100902/1-9. http://www.sciencedirect.com/science/article/pii/S2352152X19304232
|
[17] |
SUN X, AN Y, GENG L, et al. Leakage current and self-discharge in lithium-ion capacitor[J]. Journal of Electroanalytical Chemistry, 2019, 850:113386/1-7. http://www.sciencedirect.com/science/article/pii/S157266571930654X
|
[18] |
SUN X, ZHANG X, WANG K, et al. Temperature effect on electrochemical performances of Li-ion hybrid capacitors[J]. Journal of Solid State Electrochemistry, 2015, 19(8):2501-2506. doi: 10.1007/s10008-015-2876-x
|
[19] |
MANDAL B K, PADHI A K, SHI Z, et al. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2006, 162:690-695. http://www.sciencedirect.com/science/article/pii/S0378775306012006
|
[20] |
YAMADA Y, WANG J, KO S, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019, 4:469-480. http://www.nature.com/articles/s41560-019-0375-5
|
[21] |
ZHENG Q, YAMADA Y, SHANG R, et al. A cyclic phosphate-based battery electrolyte for high voltage and safe operation[J]. Nature Energy, 2020, 5:291-298. http://www.nature.com/articles/s41560-020-0567-z
|