• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
TANG Xiaoyu, HUANG Jinbo, FENG Jiewen, CHEN Xihe. Image Segmentation and Defect Detection of Insulators Based on U-net and YOLOv4[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 15-21. DOI: 10.6054/j.jscnun.2020088
Citation: TANG Xiaoyu, HUANG Jinbo, FENG Jiewen, CHEN Xihe. Image Segmentation and Defect Detection of Insulators Based on U-net and YOLOv4[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 15-21. DOI: 10.6054/j.jscnun.2020088

Image Segmentation and Defect Detection of Insulators Based on U-net and YOLOv4

More Information
  • Received Date: May 21, 2020
  • Available Online: January 04, 2021
  • The integrity of the insulator on transmission lines directly affects the safety and reliability of power transmission. Deep learning methods are used to explore the problems of insulator image extraction and defect detection. First, the mask image of the insulator region is obtained with the optimized U-net model so as to implement the semantic segmentation of the insulator. Then the YOLOv4 model is built to obtain the position of the defective insulator and achieve the detection of the self-explosive insulator. Aiming at making full use of the pixel information of high-resolution images, the "segmentation-recognition-synthesis" model is proposed to segment the insulator and obtain the defect area precisely. Multiple groups of experimental comparison are designed to verify the effectiveness of the model. The Dice coefficient of insulator segmentation based on the optimized U-net model is up to 0.92; the accuracy of the self-explosive insulator identification based on the YOLOv4 model is up to 0.96, and the average degree of overlapping IOU reaches 0.88. The research results have high practical value for the realization of intelligent power system operation and maintenance.
  • [1]
    黄新波, 刘新慧, 张烨, 等.基于红蓝色差和改进K-means算法的航拍绝缘子分类识别方法[J].高电压技术, 2018, 44(5):1528-1534. http://www.cnki.com.cn/Article/CJFDTotal-GDYJ201805018.htm

    HUANG X B, LIU X H, ZHANG Y, et al. Classification recognition method of insulator in aerial image based on the red-blue difference and developed K-means algorithm[J]. High Voltage Engineering, 2018, 44(5):1528-1534. http://www.cnki.com.cn/Article/CJFDTotal-GDYJ201805018.htm
    [2]
    刘永权, 肖德军.基于支持向量机的绝缘子图像分割[J].科技与企业, 2015(22):250-250. http://www.cqvip.com/main/zcps.aspx?c=1&id=666629088

    LIU Y Q, XIAO D J. Insulator image segmentation based on support vector machine[J]. Technology and Enterprise, 2015(22):250-250. http://www.cqvip.com/main/zcps.aspx?c=1&id=666629088
    [3]
    梁耀, 黎双文, 刘鑫磊, 等.复杂背景下目标树叶自动分割的Grabcut算法[J].华南师范大学学报(自然科学版), 2018, 50(6):112-118. doi: 10.6054/j.jscnun.2018126

    LIANG Y, NI S W, LIU X L, et al. The grabcut algorithm for the automatic segmentation of target leaves under the complex background[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(6):112-118. doi: 10.6054/j.jscnun.2018126
    [4]
    高金峰, 吕易航.航拍图像中绝缘子串的识别与分割方法研究[J].郑州大学学报(理学版), 2019, 51(4):16-22. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-zhengzhou-university-natural-science-edition_thesis/0201273466894.html

    GAO J F, LV Y H. Research on insulator string detection, segmentation and self-explosion fault identification method in aerial images[J]. Journal of Zhengzhou University(Science Edition), 2019, 51(4):16-22. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-zhengzhou-university-natural-science-edition_thesis/0201273466894.html
    [5]
    REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [6]
    陈文浩, 姚利娜, 李丰哲.无人机电网巡检中的绝缘子缺陷检测与定位[J].计算机应用, 2019, 39(S1):210-214. http://www.cnki.com.cn/Article/CJFDTotal-JSJY2019S1044.htm

    CHEN W H, YAO L N, LI F Z. Insulator defect detection and location in UAV grid inspection[J]. Journal of Computer Applications, 2019, 39(S1):210-214. http://www.cnki.com.cn/Article/CJFDTotal-JSJY2019S1044.htm
    [7]
    王梦.基于绝缘子图像的缺陷检测方法研究[D].武汉: 华中科技大学, 2019.

    WANG M. Study on the method of fault detection based on insulator images[D]. Wuhan: Huazhong University of Science and Technology, 2019.
    [8]
    RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Berlin: Springer, 2015: 234-241.
    [9]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. New York: IEEE, 2016: 779-788.
    [10]
    BOCHKOVSKIY A, WANG C Y, LIAO H Y. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. https://arxiv.org/abs/2004.10934.
    [11]
    WANG C Y, LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of cnn[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE, 2020: 390-391.
    [12]
    HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9):1904-1916.
    [13]
    LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. New York: IEEE, 2018: 8759-8768.
  • Cited by

    Periodical cited type(5)

    1. 范茫茫,罗立宏. 虚拟博物馆与实体博物馆的差异及关系解析. 美术教育研究. 2024(17): 58-60 .
    2. 王丽,王聪,缪柯铭,江采芳,李可楠. 空间转向视角下的南京市博物馆时空格局演化及其影响因素研究. 现代城市研究. 2024(10): 60-66+115 .
    3. 樊亚明,罗天佑,徐颂军. 广西乡村旅游地空间分异特征及驱动机制. 华南师范大学学报(自然科学版). 2023(02): 92-102 .
    4. 邵笑北,吴梦佳,储德平,朱祈丽,潘纪晓,王梓宁. 基于GWR的黄河流域博物馆空间格局演化及成因探析. 资源开发与市场. 2023(07): 894-902 .
    5. 田磊,张淑娴. 黄河流域博物馆空间格局演变及其影响因素研究. 泰山学院学报. 2023(03): 51-59 .

    Other cited types(4)

Catalog

    Article views (2177) PDF downloads (282) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return