Citation: | TANG Xiaoyu, HUANG Jinbo, FENG Jiewen, CHEN Xihe. Image Segmentation and Defect Detection of Insulators Based on U-net and YOLOv4[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 15-21. DOI: 10.6054/j.jscnun.2020088 |
[1] |
黄新波, 刘新慧, 张烨, 等.基于红蓝色差和改进K-means算法的航拍绝缘子分类识别方法[J].高电压技术, 2018, 44(5):1528-1534. http://www.cnki.com.cn/Article/CJFDTotal-GDYJ201805018.htm
HUANG X B, LIU X H, ZHANG Y, et al. Classification recognition method of insulator in aerial image based on the red-blue difference and developed K-means algorithm[J]. High Voltage Engineering, 2018, 44(5):1528-1534. http://www.cnki.com.cn/Article/CJFDTotal-GDYJ201805018.htm
|
[2] |
刘永权, 肖德军.基于支持向量机的绝缘子图像分割[J].科技与企业, 2015(22):250-250. http://www.cqvip.com/main/zcps.aspx?c=1&id=666629088
LIU Y Q, XIAO D J. Insulator image segmentation based on support vector machine[J]. Technology and Enterprise, 2015(22):250-250. http://www.cqvip.com/main/zcps.aspx?c=1&id=666629088
|
[3] |
梁耀, 黎双文, 刘鑫磊, 等.复杂背景下目标树叶自动分割的Grabcut算法[J].华南师范大学学报(自然科学版), 2018, 50(6):112-118. doi: 10.6054/j.jscnun.2018126
LIANG Y, NI S W, LIU X L, et al. The grabcut algorithm for the automatic segmentation of target leaves under the complex background[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(6):112-118. doi: 10.6054/j.jscnun.2018126
|
[4] |
高金峰, 吕易航.航拍图像中绝缘子串的识别与分割方法研究[J].郑州大学学报(理学版), 2019, 51(4):16-22. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-zhengzhou-university-natural-science-edition_thesis/0201273466894.html
GAO J F, LV Y H. Research on insulator string detection, segmentation and self-explosion fault identification method in aerial images[J]. Journal of Zhengzhou University(Science Edition), 2019, 51(4):16-22. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-zhengzhou-university-natural-science-edition_thesis/0201273466894.html
|
[5] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[6] |
陈文浩, 姚利娜, 李丰哲.无人机电网巡检中的绝缘子缺陷检测与定位[J].计算机应用, 2019, 39(S1):210-214. http://www.cnki.com.cn/Article/CJFDTotal-JSJY2019S1044.htm
CHEN W H, YAO L N, LI F Z. Insulator defect detection and location in UAV grid inspection[J]. Journal of Computer Applications, 2019, 39(S1):210-214. http://www.cnki.com.cn/Article/CJFDTotal-JSJY2019S1044.htm
|
[7] |
王梦.基于绝缘子图像的缺陷检测方法研究[D].武汉: 华中科技大学, 2019.
WANG M. Study on the method of fault detection based on insulator images[D]. Wuhan: Huazhong University of Science and Technology, 2019.
|
[8] |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Berlin: Springer, 2015: 234-241.
|
[9] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. New York: IEEE, 2016: 779-788.
|
[10] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. https://arxiv.org/abs/2004.10934.
|
[11] |
WANG C Y, LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of cnn[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE, 2020: 390-391.
|
[12] |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9):1904-1916.
|
[13] |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. New York: IEEE, 2018: 8759-8768.
|