• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
XU Jing, XUE Zhengyuan. Superconducting Nonadiabatic Geometric Quantum Computation with Optimal Control[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 10-14. DOI: 10.6054/j.jscnun.2020087
Citation: XU Jing, XUE Zhengyuan. Superconducting Nonadiabatic Geometric Quantum Computation with Optimal Control[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 10-14. DOI: 10.6054/j.jscnun.2020087

Superconducting Nonadiabatic Geometric Quantum Computation with Optimal Control

More Information
  • Received Date: June 04, 2020
  • Available Online: January 04, 2021
  • In order to realize quantum gates with high fidelity and strong robustness, a scheme of nonadiabatic geometric quantum computation based on superconducting quantum circuits is proposed. Arbitrary single-qubit geometric quantum gates can be realized by applying a time-dependent resonant microwave field to a superconducting qubit. Meanwhile, nontrivial two-qubit geometric quantum gates can be realized similarly on two capacitively coupled qubits. The results show that the proposed scheme not only have good robustness of geometric operations but also are compatible with optimal control technology to further enhance the gate robustness. The study makes an important step towards fault-tolerant solid-state quantum computation.
  • [1]
    BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A, 1984, 392:45-47.
    [2]
    WILCZEK F, ZEE A. Appearance of gauge structure in simple dynamical systems[J]. Physical Review Letters, 1984, 52(24):2111-2114.
    [3]
    AHARONOV Y, ANANDAN J. Phase change during a cyclic quantum evolution[J]. Physical Review Letters, 1987, 58(16):1593-1596.
    [4]
    ZHU S L, ZANARDI P. Geometric quantum gates that are robust against stochastic control errors[J]. Physical Review A, 2005, 72(2):020301/1-4. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000072000002020301000001&idtype=cvips&gifs=Yes
    [5]
    JOHANSSON M, ANDERSSON L M, ERICSSON M, et al. Robustness of nonadiabatic holonomic gates[J]. Physical Review A, 2012, 86(6):062322/1-10.
    [6]
    WANG X B, KEIJI M. Nonadiabatic conditional geometric phase shift with NMR[J]. Physical Review Letters, 2001, 87(9):097901/1-4. http://europepmc.org/abstract/med/11531598
    [7]
    ZHU S L, WANG Z D. Implementation of universal quantum gates based on nonadiabatic geometric phases[J]. Physical Review Letters, 2002, 89(9):097902/1-4. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000006000008000071000001&idtype=cvips&gifs=Yes
    [8]
    ZHAO P Z, CUI X D, XU G F, et al. Rydberg-atom-based scheme of nonadiabatic geometric quantum computation[J]. Physical Review A, 2017, 96(5):052316/1-6. doi: 10.1103/PhysRevA.96.052316
    [9]
    CHEN T, XUE Z Y. Nonadiabatic geometric quantum computation with parametrically tunable coupling[J]. Physical Review Applied, 2018, 10(5):054051/1-13.
    [10]
    SJÖVIST E, TONG D M, ANDERSSON L M, et al. Non-adiabatic holonomic quantum computation[J]. New Journal of Physics, 2012, 14(10):103035/1-10.
    [11]
    XU G F, ZHANG J, TONG D M, et al. Nonadiabatic holonomic quantum computation in decoherence-free subspaces[J]. Physical Review Letters, 2012, 109(17):170501/1-5. http://www.ncbi.nlm.nih.gov/pubmed/23215167
    [12]
    ZHENG S B, YANG C P, NORI F. Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts[J]. Physical Review A, 2016, 93(3):032313/1-5.
    [13]
    JING J, LAM C H, WU L A. Non-Abelian holonomic transformation in the presence of classical noise[J]. Phy-sical Review A, 2017, 95(1):012334/1-7.
    [14]
    LIU B J, SONG X K, XUE Z Y, et al. Plug-and-play approach to nonadiabatic geometric quantum gates[J]. Phy-sical Review Letters, 2019, 123(10):100501/1-6. http://www.ncbi.nlm.nih.gov/pubmed/31573289
    [15]
    LI S, CHEN T, XUE Z Y. Fast holonomic quantum computation on superconducting circuits with optimal control[J]. Advanced Quantum Technologies, 2020, 3(3):2000001/1-7.
    [16]
    YAN T, LIU B J, XU K, et al. Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates[J]. Physical Review Letters, 2019, 122(8):080501/1-6.
    [17]
    DAEMS D, RUSCHHAUPT A, SUGNY D, et al. Robust quantum control by a single-shot shaped pulse[J]. Phy-sical Review Letters, 2013, 111(5):050404/1-5. http://europepmc.org/abstract/med/23952372
    [18]
    DEVORET M H, SCHOELKOPF R J. Superconducting circuits for quantum information:an outlook[J]. Science, 2013, 339:1169-1174.
    [19]
    KOCH J, YU T M, MAJER J, et al. Charge-insensitive qubit design derived from the Cooper pair box[J]. Physical Review A, 2007, 76(4):042319/1-19. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000007000010000140000001&idtype=cvips&gifs=Yes
    [20]
    WANG T H, ZHANG Z X, XIANG L, et al. The experimental realization of high-fidelity ' shortcut-to-adiabati- city' quantum gates in a superconducting Xmon qubit[J]. New Journal of Physics, 2018, 20(6):065003/1-10.
  • Cited by

    Periodical cited type(2)

    1. 高莉娟,张正社,文裕,宗西方,闫启,卢丽燕,易显凤,张吉宇. 象草全基因组bHLH转录因子家族鉴定及表达分析. 草业学报. 2022(03): 47-59 .
    2. 张阳,钱多,马喆. 彩叶树种叶色影响因素及光合特性研究进展. 安徽农业科学. 2022(20): 12-17 .

    Other cited types(6)

Catalog

    Article views (575) PDF downloads (92) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return