Citation: | XU Jing, XUE Zhengyuan. Superconducting Nonadiabatic Geometric Quantum Computation with Optimal Control[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 10-14. DOI: 10.6054/j.jscnun.2020087 |
[1] |
BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A, 1984, 392:45-47.
|
[2] |
WILCZEK F, ZEE A. Appearance of gauge structure in simple dynamical systems[J]. Physical Review Letters, 1984, 52(24):2111-2114.
|
[3] |
AHARONOV Y, ANANDAN J. Phase change during a cyclic quantum evolution[J]. Physical Review Letters, 1987, 58(16):1593-1596.
|
[4] |
ZHU S L, ZANARDI P. Geometric quantum gates that are robust against stochastic control errors[J]. Physical Review A, 2005, 72(2):020301/1-4. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000072000002020301000001&idtype=cvips&gifs=Yes
|
[5] |
JOHANSSON M, ANDERSSON L M, ERICSSON M, et al. Robustness of nonadiabatic holonomic gates[J]. Physical Review A, 2012, 86(6):062322/1-10.
|
[6] |
WANG X B, KEIJI M. Nonadiabatic conditional geometric phase shift with NMR[J]. Physical Review Letters, 2001, 87(9):097901/1-4. http://europepmc.org/abstract/med/11531598
|
[7] |
ZHU S L, WANG Z D. Implementation of universal quantum gates based on nonadiabatic geometric phases[J]. Physical Review Letters, 2002, 89(9):097902/1-4. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000006000008000071000001&idtype=cvips&gifs=Yes
|
[8] |
ZHAO P Z, CUI X D, XU G F, et al. Rydberg-atom-based scheme of nonadiabatic geometric quantum computation[J]. Physical Review A, 2017, 96(5):052316/1-6. doi: 10.1103/PhysRevA.96.052316
|
[9] |
CHEN T, XUE Z Y. Nonadiabatic geometric quantum computation with parametrically tunable coupling[J]. Physical Review Applied, 2018, 10(5):054051/1-13.
|
[10] |
SJÖVIST E, TONG D M, ANDERSSON L M, et al. Non-adiabatic holonomic quantum computation[J]. New Journal of Physics, 2012, 14(10):103035/1-10.
|
[11] |
XU G F, ZHANG J, TONG D M, et al. Nonadiabatic holonomic quantum computation in decoherence-free subspaces[J]. Physical Review Letters, 2012, 109(17):170501/1-5. http://www.ncbi.nlm.nih.gov/pubmed/23215167
|
[12] |
ZHENG S B, YANG C P, NORI F. Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts[J]. Physical Review A, 2016, 93(3):032313/1-5.
|
[13] |
JING J, LAM C H, WU L A. Non-Abelian holonomic transformation in the presence of classical noise[J]. Phy-sical Review A, 2017, 95(1):012334/1-7.
|
[14] |
LIU B J, SONG X K, XUE Z Y, et al. Plug-and-play approach to nonadiabatic geometric quantum gates[J]. Phy-sical Review Letters, 2019, 123(10):100501/1-6. http://www.ncbi.nlm.nih.gov/pubmed/31573289
|
[15] |
LI S, CHEN T, XUE Z Y. Fast holonomic quantum computation on superconducting circuits with optimal control[J]. Advanced Quantum Technologies, 2020, 3(3):2000001/1-7.
|
[16] |
YAN T, LIU B J, XU K, et al. Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates[J]. Physical Review Letters, 2019, 122(8):080501/1-6.
|
[17] |
DAEMS D, RUSCHHAUPT A, SUGNY D, et al. Robust quantum control by a single-shot shaped pulse[J]. Phy-sical Review Letters, 2013, 111(5):050404/1-5. http://europepmc.org/abstract/med/23952372
|
[18] |
DEVORET M H, SCHOELKOPF R J. Superconducting circuits for quantum information:an outlook[J]. Science, 2013, 339:1169-1174.
|
[19] |
KOCH J, YU T M, MAJER J, et al. Charge-insensitive qubit design derived from the Cooper pair box[J]. Physical Review A, 2007, 76(4):042319/1-19. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000007000010000140000001&idtype=cvips&gifs=Yes
|
[20] |
WANG T H, ZHANG Z X, XIANG L, et al. The experimental realization of high-fidelity ' shortcut-to-adiabati- city' quantum gates in a superconducting Xmon qubit[J]. New Journal of Physics, 2018, 20(6):065003/1-10.
|
1. |
高莉娟,张正社,文裕,宗西方,闫启,卢丽燕,易显凤,张吉宇. 象草全基因组bHLH转录因子家族鉴定及表达分析. 草业学报. 2022(03): 47-59 .
![]() | |
2. |
张阳,钱多,马喆. 彩叶树种叶色影响因素及光合特性研究进展. 安徽农业科学. 2022(20): 12-17 .
![]() |