Citation: | JIANG Feng, LI Lintao, FENG Kuang, WANG Kang, HUANG Dingwang. Compound Semiconductor Cu2ZnSnS4 Solar Cells and Artificial Photosynthesis for Hydrogen Production[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 1-9. DOI: 10.6054/j.jscnun.2020086 |
[1] |
ANTUNEZ D P, BISHOP D M, LUO Y, et al. Efficient kesterite solar cells with high opencircuit voltage for applications in powering distributed devices[J]. Nature Energy, 2017, 2:884-890.
|
[2] |
GREEN M A. Commercial progress and challenges for photovoltaics[J]. Nature Energy, 2016, 1:15015/1-4.
|
[3] |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238:37-38.
|
[4] |
WALTER M G, WARREN E L, MCKONE J R. Solar water splitting cells[J]. Chemical Reviews, 2010, 110:6446-6473. doi: 10.1021/cr1002326
|
[5] |
LI Z S, LUO W J, ZHANG M L, et al. Photoelectrochemical cells for solar hydrogen production:current state of promising photoelectrodes, methods to improve their properties, and outlook[J]. Energy and Environmental Science, 2013, 6(2):347-370. http://pubs.rsc.org/en/content/articlepdf/2013/ee/c2ee22618a
|
[6] |
MORIYA Y, TAKATA T, DOMEN K. Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation[J]. Coordination Chemistry Reviews, 2013, 257(13/14):1957-1969.
|
[7] |
HISATOMI T, KUBOTA J, DOMEN K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting[J]. Chemical Society Reviews, 2014, 43(22):7520-7535. doi: 10.1007/978-3-319-13800-8_1.pdf
|
[8] |
LIU Y, ZHAO J, LI Z, et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J]. Nature Communications, 2014, 5(2):1-4. http://www.ncbi.nlm.nih.gov/pubmed/25382026
|
[9] |
JARIWALA D, SANGWAN V K, LAUHON L J, et al. Emerging device applications for semiconducting two- dimensional transition metal dichalcogenides[J]. ACS Nano, 2014, 8(2):1102-1120. doi: 10.1021/nn500064s
|
[10] |
YAMAMOTO K, SAKAKIMA H, OGAWA Y, et al. Fabrication of CdS/CdTe solar cells with transparent p-type conductive BaCuSeF back contact[J]. Japanese Journal of Applied Physics, 2015, 54(8):08KC01/1-4.
|
[11] |
JACKSON P, WUERZ R, HARISKOS D, et al. Effects of heavy alkali elementsin Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%[J]. Physica Status Solidi-Rapid Research Letters, 2016, 10(8):583-586.
|
[12] |
CHAWLA R, SINGHAL P, GARG A K. Design and analysis of multi junction solar photovoltaic cell with graphene as an intermediate layer[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(6):3693-3702. http://www.ingentaconnect.com/contentone/asp/jnn/2020/00000020/00000006/art00043
|
[13] |
YI J. New generation multijunction solar cells for achieving high efficiencies[J]. Current Photovoltaic Research, 2018, 6(2):31-38. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE07470269
|
[14] |
YAN C, HUANG J, SUN K, et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment[J]. Nature Energy, 2018, 3(9):764-772. http://www.nature.com/articles/s41560-018-0206-0
|
[15] |
WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTS Se thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7):1301465/1-4.
|
[16] |
GERSHON T, LEE Y S, ANTUNEZ P, et al. Photovoltaic materials and devices based on the alloyed kesterite absorber (AgxCu1-x)(2)ZnSnSe4[J]. Advanced Energy Materials, 2016, 6(10):1502468/1-7.
|
[17] |
JIANG F, IKEDA S, HARADA T, et al. Pure sulfide Cu2ZnSnS4 thin film solar cells fabricated by preheating an electrodeposited metallic stack[J]. Advanced Energy Materials, 2014, 4(7):1301381/1-6.
|
[18] |
JIANG F, IKEDA S, HARADA T, et al. Fabrication of an efficient electrodeposited Cu2ZnSnS4-based solar cells with more than 6% conversion efficiency using a sprayed Ga-doped ZnO window layer[J]. RSC Advances, 2014, 4:24351-24355.
|
[19] |
JIANG F, IKEDA S, TANG Z, et al. Impact of alloying duration of an electrodeposited Cu/Sn/Zn metallic stack on properties of Cu2ZnSnS4 absorbers for thin-film solar cells[J]. Progress In Photovoltaics, 2015, 23(12):1884-1895.
|
[20] |
JIANG F, SHEN H L. Fabrication and photovoltaic properties of Cu2ZnSnS4/i-a-Si/n-a-Si thin film solar cells[J]. Applied Surface Science, 2013, 280:138-143. http://www.sciencedirect.com/science/article/pii/S0169433213008295
|
[21] |
JIANG F, SHEN H, JIAO J. Effect of the thickness on the optoelectronic properties of SnS films and photovoltaic performance of SnS/i-a-Si/n-a-Si solar cells[J]. Applied Physics A:Materials Science & Processing, 2014, 117(4):2167-2173.
|
[22] |
JIANG F, OZAKI C, HARADA T, et al. Effect of indium doping on surface optoelectrical properties of Cu2ZnSnS4 photoabsorber and interfacial/photovoltaic performance of cadmium free In2S3/Cu2ZnSnS4 heterojunction thin film solar cell[J]. Chemistry of Materials, 2016, 28(10):3283-3291.
|
[23] |
JIANG F, LI S, OZAKI C, et al. Co-electrodeposited Cu2ZnSnS4 thin film solar cell and Cu2ZnSnS4 solar cell-BiVO4 tandem device for unbiased solar water splitting[J]. Solar RRL, 2018, 2(3):1700205/1-6.
|
[24] |
NGUYEN T H, SEPTINA W, FUJIKAWA S, et al. Cu2ZnSnS4 thin film solar cells with 5.8% conversion efficiency obtained by a facile spray pyrolysis technique[J]. RSC Advances, 2015, 5:77565-77571.
|
[25] |
JIANG F, HARADA T, KUANG Y B, et al. Pt/In2S3/CdS/Cu2ZnSnS4 thin film as an efficient and stable photocathode for water reduction under sunlight radiation[J]. Journal of the American Chemical Society, 2015, 137(42):13691-13697.
|
[26] |
WANG K, HUANG D W, YU L, et al. Environmentally friendly Cu2ZnSnS4-based photocathode modified with a ZnS protection layer for efficient solar water splitting[J]. Journal of Colloid and Interface Science, 2019, 536:9-16.
|
[27] |
HUANG D W, WANG K, YU L, et al. Over 1% efficient unbiased stable solar water splitting based on a sprayed Cu2ZnSnS4 photocathode protected by a HfO2 photocorrosion-resistant film[J]. ACS Energy Letters, 2018, 3(8):1875-1881.
|
[28] |
FENG K, HUANG D W, LI L T, et al. MoSx-CdS/Cu2ZnSnS4-based thin film photocathode for solar hydrogen evolution from water[J]. Applied Catalysis B:Environmental, 2020, 268:118438/1-9.
|
[29] |
WANG K, HUANG D W, YU L, et al. Promising GeSe nanosheet-based thin-film photocathode for efficient and stable overall solar water splitting[J]. ACS Catalysis, 2019, 9(4):3090-3097.
|
[30] |
FENG K, CAI Z, HUANG D, et al. Near-infrared-driven water splitting for hydrogen evolution from Cu2ZnSnS4-based photocathode by the application of upconversion nanoparticles[J]. Sustainable Energy and Fuels, 2020, 4(6):2669-2674.
|