• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHANG Zuanxian, REHMAN Fazal, CHEN Zhiwen, HUANG Wei. Population Transfer Manipulated by Composite Pulse Sequences in the Ladder-Type Multi-State Quantum System[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 31-36. DOI: 10.6054/j.jscnun.2020057
Citation: ZHANG Zuanxian, REHMAN Fazal, CHEN Zhiwen, HUANG Wei. Population Transfer Manipulated by Composite Pulse Sequences in the Ladder-Type Multi-State Quantum System[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 31-36. DOI: 10.6054/j.jscnun.2020057

Population Transfer Manipulated by Composite Pulse Sequences in the Ladder-Type Multi-State Quantum System

More Information
  • Received Date: February 21, 2020
  • Available Online: September 03, 2020
  • A method is proposed to achieve quantum state manipulation and population transfer in the ladder-type quantum system using composite pulse sequences. First, using the Morris-Shore transformation, the two-level propagation operator is used to describe the evolution of the multi-state quantum system. Then by increasing the number of pulse sequences with well-defined relative phase, quantum state manipulation and population transfer with high efficiency and high robustness are realized while the unwanted transition is effectively suppressed. After that, the influence of Rabi frequency ratio, the change of pulse area, and the single photon detuning on the population transfer efficiency is studied with numerical calculation. It is proved that the complex pulse manipulation method used in two-level quantum systems can also be applied to multi-state quantum systems and the parameter perturbations can be compensated automatically. This technology of composite pulse sequences can be used to overcome the efficiency reduction in the quantum manipulation process caused by polarization impurity, laser frequency deviation and parameter disturbance. This method is of great significance to the quantum gate construction and quantum simulation.
  • [1]
    FREEMAN R. Spin Choreography[M]. Oxford: Spektrum, 1997.
    [2]
    HÄFFNER H, ROOS C F, BLATT R. Quantum computing with trapped Ions[J]. Physics Reports, 2008, 469(4):155-203. doi: 10.1016/j.physrep.2008.09.003
    [3]
    IVANOV S S, VITANOV N V. Scalable uniform construction of highly conditional quantum gates[J]. Physical Review A, 2011, 84(2):022319/1-5.
    [4]
    TOROSOV B T, VITANOV N V. Smooth composite pulses for high-fidelity quantum Information processing[J]. Physical Review A, 2011, 83(5):053420/1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ebf39d6fca23424502c0cb41b2bed4df
    [5]
    IVANOV S S, VITANOV N V. High-fidelity local addressing of trapped Ions and Atoms by composite sequences of laser pulses[J]. Optics Letters, 2011, 36(7):1275-1277. doi: 10.1364/OL.36.001275
    [6]
    TOROSOV B T, GUÉRIN S, VITANOV N V. High-fidelity adiabatic passage by composite sequences of chirped pulses[J]. Physical Review Letters, 2011, 106(23):233001/1-4.
    [7]
    GENOV G T, TOROSOV B T, VITANOV N V. Optimized control of multistate Quantum systems by composite pulse sequences[J]. Physical Review A, 2011, 84(6):063413/1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c232cec3746640f088548749556021ee
    [8]
    GENOV G T, VITANOV N V. Dynamical suppression of unwanted Transitions in multistate quantum systems[J]. Physical Review Letters, 2013, 110(13):133002/1-5.
    [9]
    VITANOV N V. Arbitrarily accurate narrowband compo-site pulse sequences[J]. Physical Review A, 2011, 84(6):065404/1-4.
    [10]
    HIROSE M, CAPPELLARO P, AIELLO C D. Composite-pulse magnetometry with a solid-state quantum sensor[J]. Nature Communications, 2013, 4(1):1419-1424. doi: 10.1038/ncomms2375
    [11]
    SCHERER N F, CARLSON R J, MATRO A, et al. Fluorescence-detected wave packet interferometry:time resolved molecular spectroscopy with sequences of femtose-cond phase-locked pulses[J]. The Journal of Chemical Physics, 1991, 95(3):1487-1511. doi: 10.1063/1.461064
    [12]
    BUTTS D L, KOTRU K, KINAST J M, et al. Efficient broadband Raman pulses for large-area atom interferometry[J]. Journal of the Optical Society of America B, 2013, 30(4):922-927. doi: 10.1364/JOSAB.30.000922
    [13]
    TOROSOV B T, VITANOV N V. High-fidelity error-resilient composite phase gates[J]. Physical Review A, 2014, 90(1):124-129.
    [14]
    YAN D, CUI C L, ZHANG M, et al. Coherent population transfer and quantum entanglement generation involving a Rydberg state by stimulated Raman adiabatic passage[J]. Physical Review A, 2011, 84(4):043405/1-6.
    [15]
    GULDE S, RIEBE M, LANCASTER G P T, et al. Implementation of the Deutsch-Jozsa algorithm on an Ion-trap quantum computer[J]. Nature, 2003, 421(6918):48-50. doi: 10.1038/nature01336
    [16]
    SCHMIDT-KALER F, HÄFFNER H, RIEBE M, et al. Realization of the Cirac-Zoller Controlled-NOT quantum gate[J]. Nature, 2003, 422:408-411. doi: 10.1038/nature01494
    [17]
    TIMONEY N, ELMAN V, GLASER S, et al. Error-resistant single qubit gates with trapped ions[J]. Physical Review A, 2006, 77(5):052334/1-7.
    [18]
    JONES J A. Nested composite NOT gates for quantum computation[J]. Physics Letters A, 2013, 377(40):2860-2862. doi: 10.1016/j.physleta.2013.08.040
    [19]
    黄巍, 张善超, 颜辉, 等.玻色-爱因斯坦凝聚体量子模拟实验技术进展[J].华南师范大学学报(自然科学版), 2018, 50(5):19-24. doi: 10.6054/j.jscnun.2018094

    HUANG W, ZHANG S C, YAN H, et al. Laboratory techniques of quantum simulation using Bose-Einstein condensates[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(5):19-24. doi: 10.6054/j.jscnun.2018094
    [20]
    REHMAN F, LI J Z, CHEN Z W, et al. Production of 87Rb Bose-Einstein condensate with a simple evaporative cooling method[J]. Chinese Physics Letters, 2020, 37(3):036701/1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwlkb-e202003012
    [21]
    XU J, DU Y X, HUANG W. Improving coherent population transfer via a stricter adiabatic condition[J]. Physical Review A, 2019, 100(2):023848/1-5.
    [22]
    BRUNS A, GENOV G T, HAIN M, et al. Experimental dem-onstration of composite stimulated Raman adiabatic passage[J]. Physical Review A, 2018, 98(5):053413/1-9.
    [23]
    ZHANG Q, CHEN X, GUÉRY-ODELIN D. Reverse engineering protocols for controlling spin dynamics[J]. Scientific Reports, 2017, 7(1):15814/1-9.
    [24]
    GENOV G T, SCHRAFT D, HALFMANN T. Universal composite pulses for efficient population inversion with an arbitrary excitation profile[J]. Physical Review A, 2020, 101(1):013827/1-9.
    [25]
    KANG Y H, CHEN Y H, SHI Z C, et al. Pulse design for multilevel systems by utilizing Lie transforms[J]. Physical Review A, 2018, 97(3):033407/1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=04bca4bae4a7dec85174eee5d7238156

Catalog

    Article views (877) PDF downloads (56) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return