• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YU Hanyu, HUANG Jin, ZHU Jia. Fea2Lab: A Feature-to-Label Generation Model Based on Multi-Label Learning[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 111-119. DOI: 10.6054/j.jscnun.2020052
Citation: YU Hanyu, HUANG Jin, ZHU Jia. Fea2Lab: A Feature-to-Label Generation Model Based on Multi-Label Learning[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 111-119. DOI: 10.6054/j.jscnun.2020052

Fea2Lab: A Feature-to-Label Generation Model Based on Multi-Label Learning

More Information
  • Received Date: November 20, 2019
  • Available Online: March 21, 2021
  • Only a single feature vector associated with the instance is considered in the traditional multi-label learning method, which predicts the overall label without a difference, thereby ignoring other similar instances and hiding label attributes. That results in such problems as less input spatial feature information, label attributes ignored and poor prediction about the large label space. In order to solve the above problems, the traditional multi-label learning task is converted into the sequence-to-sequence task of multi-label learning. On this basis is proposed Fea2Lab, a novel neural network model of multi-label learning label sequence generation. In this model, the chained feature vector input sequence formed by staggered sequential arrangement instances and similar instances is used to enrich the input spatial feature information. The label attributes are mined to predict the labels in a targeted manner. In the decoding process, the global label information is used to ease the problem that the cascading of the wrong label appears. The experimental results and ablation experiments on multiple data sets show the rationality, feasibility and effectiveness of the transformation task and the Fea2Lab model.
  • [1]
    MITCHELL T M. Machine learning[J].New York:McGraw-Hill, 1997. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216575822/
    [2]
    TSOUMAKAS G, KATAKIS I. Multi-label classification:an overview[J]. International Journal of Data Warehousing and Mining, 2007, 3(3):1-13. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227335633/
    [3]
    ZHANG M, ZHOU Z. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8):1819-1837. doi: 10.1109/TKDE.2013.39
    [4]
    BOUTELL M R, LUO J, SHEN X, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9):1757-1771. doi: 10.1016/j.patcog.2004.03.009
    [5]
    FVRNKRANZ J, HVLLERMEIER E, MENCÍA E L, et al. Multilabel classification via calibrated label ranking[J]. Machine Learning, 2008, 73(2):133-153. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027595258/
    [6]
    TSOUMAKAS G, VLAHAVAS I. Random, k-Labelsets: an ensemble method for multilabel classification[C]//Proceedings of the 18th European Conference on Machine Learning. Berlin: Springer, 2007: 406-417.
    [7]
    ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. Vancouver: MIT Press, 2001: 681-687.
    [8]
    ZHANG M L, ZHOU Z H. ML-KNN:a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7):2038-2048. doi: 10.1016/j.patcog.2006.12.019
    [9]
    ZHANG M L, ZHANG K. Multi-label learning by exploiting label dependency[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining. New York: ACM, 2010: 999-1008.
    [10]
    BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C/OL]//Proceedings of the 3rd International Conference on Learning Representations, (2014-09-01)[2019-10-10]. https://arxiv.org/abs/1409.0473.
    [11]
    SUN X, WEI B, REN X, et al. Label embedding network: learning label representation for soft training of deep networks[J/OL]. Computing Research Repository, (2017-10-28)[2019-10-10]. https://arxiv.org/abs/1710.10393.
    [12]
    YANG P, SUN X, LI W, et al. SGM: Sequence generation model for multi-label classification[C]//Proceedings of the 27th International Conference on Computational Linguistics. New-Mexico: ACL, 2018: 3915-3926.
    [13]
    NAM J, MENCÍA E L, KIM H J, et al. Maximizing subset accuracy with recurrent neural networks in multi-label classification[C]//Advances in Neural Information Processing Systems. California: Curran Associates, 2017: 5413-5423.
    [14]
    HUANG Y, WANG W, WANG L, et al. Multi-task deep neural network for multi-label learning[C]//Proceedings of 2013 IEEE International Conference on Image Processing. Melbourne: IEEE, 2013: 2897-2900.
    [15]
    ZHANG M L, ZHOU Z H. Multilabel neural networks with applications to functional genomics and text categorization[J]. IEEE Transactions on Knowledge and Data Enginee-ring, 2006, 18(10):1338-1351. doi: 10.1109/TKDE.2006.162
    [16]
    CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Qatar: ACL, 2014: 1724-1734.
    [17]
    VAN DER HEIJDEN F, DUIN R P, DE RIDDER D, et al. Classification, parameter estimation and state estimation: an engineering approach using MATLAB[M]. New Jersey:John Wiley & Sons, 2005.
    [18]
    刘宇, 熊有伦.基于有界k-d树的最近点搜索算法[J].华中科技大学学报(自然科学版), 2008, 36(7):73-76. doi: 10.3321/j.issn:1671-4512.2008.07.020

    LIU Y, XIONG Y L. Algorithm for searching nearest-neighbor based on the bounded k-d tree[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2008, 36(7):73-76. doi: 10.3321/j.issn:1671-4512.2008.07.020
    [19]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [20]
    LUONG M T, PHAM H, MANNING C D. Effective approaches to attention-based neural machine translation[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.Qatar: ACL, 2015: 1412-1421.
    [21]
    YU L, ZHANG W, WANG J, et al. SeqGAN: sequence generative adversarial nets with policy gradient[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. California: AAAI Press, 2017: 2852-2858.
    [22]
    FREITAG M, AL-ONAIZAN Y. Beam search strategies for neural machine translation[C]//Proceedings of the First Workshop on Neural Machine Translation. Vancouver: Association for Computational Linguistics, 2017: 56-60.
    [23]
    TROHIDIS K. Multi-labelclassification of music into emotions[C]//Proceedings of the 9th International Confe-rence on Music Information Retrieval. Philadelphia: [s.n], 2008: 325-330.
    [24]
    READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification[J]. Machine Lear-ning, 2011, 85(3):333-359. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1304.5862
    [25]
    ZHANG M L, WU L. Lift:multi-label learning with label-specific features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(1):107-120. http://d.old.wanfangdata.com.cn/Periodical/zgxdyxzz201802017
    [26]
    KINGMA D P, BA J. Adam: a method for stochastic optimization[C/OL]//Proceedings of the 3rd International Conference on Learning Representations, (2014-12-22)[2019-10-10]. https://arxiv.org/abs/1412.6980.
    [27]
    SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1):1929-1958. http://d.old.wanfangdata.com.cn/Periodical/kzyjc200606005
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (979) PDF downloads (63) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return