• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
DU Yunmei, HUANG Shuai, LIANG Huiying. The Detection of Anomaly in Electroencephalogram with Deep Convolutional Neural Networks[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 122-128. DOI: 10.6054/j.jscnun.2020035
Citation: DU Yunmei, HUANG Shuai, LIANG Huiying. The Detection of Anomaly in Electroencephalogram with Deep Convolutional Neural Networks[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 122-128. DOI: 10.6054/j.jscnun.2020035

The Detection of Anomaly in Electroencephalogram with Deep Convolutional Neural Networks

More Information
  • Received Date: September 18, 2019
  • Available Online: March 21, 2021
  • In order to solve the problem of high error rate in EEG automatic detection, a method of EEG anomaly detection based on deep convolution neural network (CNN) is proposed. Firstly, multiple heterogeneous data sources are reconstructed and preprocessed according to the standard, and a training set with 118 716 samples and a test set with 12 022 samples are generated. Secondly, a deep CNN model with fast connection is constructed. Then, the model is tested and adjusted on the training set, and the best model parameters are saved. Finally, the model is predicted on the test set. The prediction results show that the model achieves 94.33% classification accuracy. EEG features can be automatically extracted and abnormal recognition can be carried out through the processing and analysis of EEG signals with the proposed method, so as to achieve the purpose of rapid detection and auxiliary diagnosis.
  • [1]
    MEDITHE J W C, NELAKUDITI U R. Study of normal and abnormal EEG[C]//Proceedings of the 3rd International Conference on Advanced Computing and Communication Systems. Coimbatore: IEEE, 2016: 1-4.
    [2]
    SHOEB A, GUTTAG J. Application of machine learning to epileptic seizure detection[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel: [s.n.], 2010.
    [3]
    杜云梅, 梁会营, 黄帅.基于分层阈值的儿童脑电信号流式降噪预处理[J].中国数字医学, 2019, 14(3):88-91. http://d.old.wanfangdata.com.cn/Periodical/zgszyx201903027

    DU Y M, LIANG H Y, HUANG S. Preprocessing of stream denoising for children's EEG signals based on hierarchical thresholds[J]. China Digital Medicine, 2019, 14(3):88-91. http://d.old.wanfangdata.com.cn/Periodical/zgszyx201903027
    [4]
    RAJPURKAR P, HANNUN A Y, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection with convolutional neural networks[J/OL]. (2017-07-06)[2019-08-10]. https://arxiv.org/pdf/1707.01836.pdf.
    [5]
    HASSAN M, SHAMAS M, KHALIL M, et al. EEGNET: An open source tool for analyzing and visualizing M/EEG Connectome[J]. PLOS ONE, 2015, 10(9):e0138297/1-20. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228850016/
    [6]
    ACHARYA U R, HAGIWARA Y, ADELI H. Automated seizure prediction[J]. Epilepsy & Behavior, 2018, 88:251-261. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230880075/
    [7]
    YANG J B, NGUYEN M N, SAN P P, et al. Deep convolutional neural networks on multichannel time series for human activity recognition[C]//Proceedings of the 24th International Conferencd on Artificial Intelligence. California: AAAI Press, 2015.
    [8]
    ZHANG P, WANG X, ZHANG W, et al. Learning spatial-spectral-temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(1):31-42. http://www.researchgate.net/publication/329392626_Learning_Spatial-Spectral-Temporal_EEG_Features_With_Recurrent_3D_Convolutional_Neural_Networks_for_Cross-Task_Mental_Workload_Assessment
    [9]
    YANG Y L, WU Q F, QIU M, et al. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network[C]//Proceedings of the 2018 International Joint Conference on Neural Networks. Rio de Janeiro: IEEE, 2018: 1-7.
    [10]
    ACHARYA U R, OH S L, HAGIWARA Y, et al. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals[J]. Compu-ters in Biology and Medicine, 2018, 100:270-278. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cb9ee9b03779afd848d25fac32a9dd2a
    [11]
    刘晓燕.临床脑电图学[M]. 3版.北京:人民卫生出版社, 2017.
    [12]
    MALMIVUO J, PLONSEY R. Bioelectromagnetism[M/OL]. New York: Oxford University Press, 1995. http://www.bem.fi/book/13/13.htm#03.
    [13]
    SHOEB A. Application of machine learning to epileptic seizure onset detection and treatment[D]. Cambridge: Massachusetts Institute of Technology, 2009.
    [14]
    NEDC. Temple university hospital EEG resources: TUH EEG(v1.4.0)[DS/OL]. Philadelphia: Temple University Hospital, (2018-10-22)[2019-08-10]. https://www.isip.piconepress.com/projects/tuh_eeg/.
    [15]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016.
    [16]
    KWAPISZ J R, WEISS G M, MOORE S A. Activity recognition using cell phone accelerometers[J]. ACM SIGKDD Explorations Newsletter, 2011, 12(2):74-82. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221378880/
    [17]
    VAN LEEUWEN K G, SUN H, TABAEIZADEH M, et al. Detecting abnormal electroencephalograms using deep convolutional networks[J]. Clinical Neurophysiology, 2019, 130(1):77-84.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (5264) PDF downloads (223) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return