Citation: | DU Yunmei, HUANG Shuai, LIANG Huiying. The Detection of Anomaly in Electroencephalogram with Deep Convolutional Neural Networks[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 122-128. DOI: 10.6054/j.jscnun.2020035 |
[1] |
MEDITHE J W C, NELAKUDITI U R. Study of normal and abnormal EEG[C]//Proceedings of the 3rd International Conference on Advanced Computing and Communication Systems. Coimbatore: IEEE, 2016: 1-4.
|
[2] |
SHOEB A, GUTTAG J. Application of machine learning to epileptic seizure detection[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel: [s.n.], 2010.
|
[3] |
杜云梅, 梁会营, 黄帅.基于分层阈值的儿童脑电信号流式降噪预处理[J].中国数字医学, 2019, 14(3):88-91. http://d.old.wanfangdata.com.cn/Periodical/zgszyx201903027
DU Y M, LIANG H Y, HUANG S. Preprocessing of stream denoising for children's EEG signals based on hierarchical thresholds[J]. China Digital Medicine, 2019, 14(3):88-91. http://d.old.wanfangdata.com.cn/Periodical/zgszyx201903027
|
[4] |
RAJPURKAR P, HANNUN A Y, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection with convolutional neural networks[J/OL]. (2017-07-06)[2019-08-10]. https://arxiv.org/pdf/1707.01836.pdf.
|
[5] |
HASSAN M, SHAMAS M, KHALIL M, et al. EEGNET: An open source tool for analyzing and visualizing M/EEG Connectome[J]. PLOS ONE, 2015, 10(9):e0138297/1-20. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228850016/
|
[6] |
ACHARYA U R, HAGIWARA Y, ADELI H. Automated seizure prediction[J]. Epilepsy & Behavior, 2018, 88:251-261. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230880075/
|
[7] |
YANG J B, NGUYEN M N, SAN P P, et al. Deep convolutional neural networks on multichannel time series for human activity recognition[C]//Proceedings of the 24th International Conferencd on Artificial Intelligence. California: AAAI Press, 2015.
|
[8] |
ZHANG P, WANG X, ZHANG W, et al. Learning spatial-spectral-temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(1):31-42. http://www.researchgate.net/publication/329392626_Learning_Spatial-Spectral-Temporal_EEG_Features_With_Recurrent_3D_Convolutional_Neural_Networks_for_Cross-Task_Mental_Workload_Assessment
|
[9] |
YANG Y L, WU Q F, QIU M, et al. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network[C]//Proceedings of the 2018 International Joint Conference on Neural Networks. Rio de Janeiro: IEEE, 2018: 1-7.
|
[10] |
ACHARYA U R, OH S L, HAGIWARA Y, et al. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals[J]. Compu-ters in Biology and Medicine, 2018, 100:270-278. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cb9ee9b03779afd848d25fac32a9dd2a
|
[11] |
刘晓燕.临床脑电图学[M]. 3版.北京:人民卫生出版社, 2017.
|
[12] |
MALMIVUO J, PLONSEY R. Bioelectromagnetism[M/OL]. New York: Oxford University Press, 1995. http://www.bem.fi/book/13/13.htm#03.
|
[13] |
SHOEB A. Application of machine learning to epileptic seizure onset detection and treatment[D]. Cambridge: Massachusetts Institute of Technology, 2009.
|
[14] |
NEDC. Temple university hospital EEG resources: TUH EEG(v1.4.0)[DS/OL]. Philadelphia: Temple University Hospital, (2018-10-22)[2019-08-10]. https://www.isip.piconepress.com/projects/tuh_eeg/.
|
[15] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016.
|
[16] |
KWAPISZ J R, WEISS G M, MOORE S A. Activity recognition using cell phone accelerometers[J]. ACM SIGKDD Explorations Newsletter, 2011, 12(2):74-82. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221378880/
|
[17] |
VAN LEEUWEN K G, SUN H, TABAEIZADEH M, et al. Detecting abnormal electroencephalograms using deep convolutional networks[J]. Clinical Neurophysiology, 2019, 130(1):77-84.
|