• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LUO Kaiqing, YANG Kun, ZHANG Jian, XIAO Hua. The Improved BRISK Feature Extraction Algorithm Based on Quadtree[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 114-121. DOI: 10.6054/j.jscnun.2020034
Citation: LUO Kaiqing, YANG Kun, ZHANG Jian, XIAO Hua. The Improved BRISK Feature Extraction Algorithm Based on Quadtree[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 114-121. DOI: 10.6054/j.jscnun.2020034

The Improved BRISK Feature Extraction Algorithm Based on Quadtree

More Information
  • Received Date: October 28, 2019
  • Available Online: March 21, 2021
  • In order to solve the problem of low calculation speed of the Binary Robust Invariant Scalable Keypoints (BRISK) algorithm and extreme density of the feature points extracted, an improved BRISK feature extraction algorithm based on quadtree (Quad-BRISK algorithm) with the method of quadtree homogenization is proposed. After the feature points with scale invariance are extracted and detected on the generated image pyramid, the feature points are divided with the quadtree method, and then the direction of the feature points and the BRISK descriptor are calculated. After coarse matching, filtering and purification, the precise matching images are finally obtained. Using the feature comparison test dataset of Mikolajczyk and Schmid, the SIFT, ORB, BRISK and Quad-BRISK algorithms are tested and compared. The experimental results show that the Quad-BRISK algorithm can not only extract more stable feature points but also improve the matching accuracy and calculation speed of feature points.
  • [1]
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6d7f4db9dae5b32514309ee242a50f4b
    [2]
    BAY H, ESS A, TUYTELAARS T. SURF:speeded up robust features[J]. Computer Vision & Image Understan-ding, 2008, 110(3):346-359 http://d.old.wanfangdata.com.cn/Periodical/hwyjggc200901035
    [3]
    RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF[C]//Proceedings of the 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2012: 2564-2571.
    [4]
    LEUTENEGGER S, CHLI M, SIEGWART R Y. BRISK: binary robust invariant scalable keypoints[C]//Procee-dings of the 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 6-13.
    [5]
    黄钰雯, 胡立坤, 卢泉, 等.基于改进SURF-BRISK算法的航拍图像拼接方法[J].广西大学学报(自然科学版), 2017, 42(3):1058-1068. http://d.old.wanfangdata.com.cn/Periodical/gxdxxb201703030

    HUANG Y W, HU L K, LU Q, et al. A mosaic method of unmanned aerial vehicle images based on the improved SURF-BRISK[J]. Journal of Guangxi University(Natural Science Edition), 2017, 42(3):1058-1068. http://d.old.wanfangdata.com.cn/Periodical/gxdxxb201703030
    [6]
    赵婷, 康海林, 张正平.结合区域分块的快速BRISK图像拼接算法[J].激光与光电子学进展, 2018, 55(3):210-215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201803024

    ZHAO T, KANG H L, ZHANG Z P. Fast image mosaic algorithm based on area blocking and BRISK[J]. Laser & Optoelectronics Progress, 2018, 55(3):210-215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201803024
    [7]
    CEN C, LI R Q, XU X. Fast robust matching algorithm based on BRISK and GMS[J]. Journal of Physics:Conference Series, 2019, 1237(2):022070/1-6.
    [8]
    MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM:a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5):1147-1163. http://d.old.wanfangdata.com.cn/Periodical/jsjyy201705041
    [9]
    ROSTEN E, DRUMMOND T. Machine learning for high-speed corner detection[C]//Proceedings of the 9th European Conference on Computer Vision. Berlin: Springer, 2006: 430-443..
    [10]
    KLEIN G, MURRAY D. Improving the agility of keyframe-based SLAM[C]//Proceedings of the 10th European Conference on Computer Vision. Berlin: Springer, 2008: 802-815.
    [11]
    ROSIN P L. Measuring corner properties[J]. Computer Vision and Image Understanding, 1999, 73(2):291-307. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023455194/
    [12]
    成怡, 佟晓宇.基于改进ORB算法的移动机器人视觉SLAM方法研究[J].电子技术应用, 2019, 45(1):10-13;18. http://d.old.wanfangdata.com.cn/Periodical/dzjsyy201901003

    CHENG Y, TONG X Y. Research on visual SLAM method of mobile robot based on improved ORB algorithm[J]. Application of Electronic Technique, 2019, 45(1):10-13;18. http://d.old.wanfangdata.com.cn/Periodical/dzjsyy201901003
    [13]
    HARRIS C G, STEPHENS M. A combined corner and edge detector[C]//Proceedings of the Fourth Alvey Vision Conference. Manchester: [s.n.], 1988: 147-151.
    [14]
    TRAN Q H, CHIN T J, CARNEIRO G, et al. In defence of RANSAC for outlier rejection in deformable registration[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin: Springer, 2012: 274-287.
    [15]
    MIKOLAJCZYK K, TUYTELAARS T, SCHMIS C, et al. A comparison of affine region detectors[J]. International Journal of Computer Vision, 2005, 65:43-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5b49a81863c6d17cdfba4efb1ddef11b
    [16]
    朱成德, 李志伟, 王凯, 等.基于改进网格运动统计特征的图像匹配算法[J].计算机应用, 2019, 39(8):2396-2401. http://d.old.wanfangdata.com.cn/Periodical/jsjyy201908034

    ZHU C D, LI Z W, WANG K, et al. Image matching algorithm based on improved RANSAC -GMS[J]. Journal of Computer Applications, 2019, 39(8):2396-2401. http://d.old.wanfangdata.com.cn/Periodical/jsjyy201908034
  • Cited by

    Periodical cited type(2)

    1. 李华非,曹生奎,季雨桐,侯瑶芳,杨羽帆. 青海湖沙柳河流域土壤水氢氧稳定同位素组成空间变化特征. 生态科学. 2023(04): 82-91 .
    2. 左海军,徐庆,高德强,张蓓蓓,何冬梅,江浩,王磊. 江苏里下河淡水湿地森林土壤水对降水的响应. 陆地生态系统与保护学报. 2023(01): 23-33 .

    Other cited types(6)

Catalog

    Article views (3032) PDF downloads (108) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return