• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
HUANG Guofu, WANG Miao, WANG Mianmian, SONG Jimei, LIU Haijian. Degradation of Tetrabromobisphenol A with Surfactant-Enhanced PAC-Pd/Fe Nanoparticles[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 53-59. DOI: 10.6054/j.jscnun.2020027
Citation: HUANG Guofu, WANG Miao, WANG Mianmian, SONG Jimei, LIU Haijian. Degradation of Tetrabromobisphenol A with Surfactant-Enhanced PAC-Pd/Fe Nanoparticles[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 53-59. DOI: 10.6054/j.jscnun.2020027

Degradation of Tetrabromobisphenol A with Surfactant-Enhanced PAC-Pd/Fe Nanoparticles

More Information
  • Received Date: October 22, 2019
  • Available Online: March 21, 2021
  • Pd/Fe nanoparticles are considered effective agents for the degradation of halogenated organic compounds (HOCs). However, the high hydrophobicity of tetrabromobisphenol A (TBBPA) hinders its degradation owing to the inefficient contacts of TBBPA and Pd/Fe nanoparticles. To promote the degradation of TBBPA, the effects of different surfactants on TBBPA degradation with PAC-Pd/Fe nanoparticles were investigated. The results show that the anionic surfactant SDS had the best promoting effect on TBBPA degradation and the rate of reaction increased by 1.7-2.5 times. The nonionic surfactant TX-100 had little enhancement in TBBPA degradation. It even exerted an inhibitive effect as its concentration went above the critical micelle concentration. The cationic surfactant CTAB displayed the most inhibitive effect on TBBPA degradation, and the inhibition was stronger as the surfactant concentration increased. The degradation of TBBPA with PAC-Pd/Fe nanoparticles was a consecutive debromination reaction. The corresponding degradation rate constants of parent TBBPA and its intermediates tri-BBPA, di-BBPA and mono-BBPA were 0.466 2, 0.435 6, 0.338 0 and 0.271 1 min-1, respectively, which were proportional to the amount of bromide atoms on benzene rings.
  • [1]
    WIT C A D. An overview of brominated flame retardants in the environment[J]. Chemosphere, 2002, 46(5):583-624. http://cn.bing.com/academic/profile?id=f1fc512e334b24fc2a544ac4f93d3ac3&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    WANG J, LIU L, WANG J, et al. Distribution of metals and brominated flame retardants (BFRs) in sediments, soils and plants from an informal e-waste dismantling site, South China[J]. Environmental Science and Pollution Research, 2015, 22(2):1020-1033. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84384431a1954349654eb8e8f0adb630
    [3]
    SONG S, SONG M, ZENG L, et al. Occurrence and profiles of bisphenol analogues in municipal sewage sludge in China[J]. Environmental Pollution, 2014, 186:14-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=382243ee4703c246e5833a34d7266d74
    [4]
    张伟文, 刘胜利, 胡勇有, 等.石墨烯气凝胶对四溴双酚A的吸附研究[J].华南师范大学学报(自然科学版), 2018, 50(2):50-56. http://journal-n.scnu.edu.cn/article/id/4200

    ZHANG W W, LIU S L, HU Y Y, et al. Adsorption of tetrabromobisphenol A by grapheme aerogels[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(2):50-56. http://journal-n.scnu.edu.cn/article/id/4200
    [5]
    LYCHE J L, ROSSELAND C, BERGE G, et al. Human health risk associated with brominated flame-retardants (BFRs)[J]. Environment International, 2015, 74:170-180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=261583e7cfa34409eac8e23fd37bf157
    [6]
    陈玛丽, 刘青坡, 施华宏.四溴双酚-A的甲状腺激素干扰活性研究进展[J].环境与健康杂志, 2008, 25(10):937-939. http://d.old.wanfangdata.com.cn/Periodical/hjyjkzz200810039

    CHEN M L, LIU Q P, SHI H H. Thyroid hormone disrupting activities of tetrabromobisphenol A :a review[J]. Journal of Environment and Health, 2008, 25(10):937-939. http://d.old.wanfangdata.com.cn/Periodical/hjyjkzz200810039
    [7]
    KUIPER R V, Van den BRANDHOF E J, LEONARDS P E G, et al. Toxicity of tetrabromobisphenol A (TBBPA) in zebrafish (Danio rerio) in a partial life-cycle test[J]. Archives of Toxicology, 2007, 81(1):1-9. http://cn.bing.com/academic/profile?id=7db4779f08bc1538071a1e168bbd30fd&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    LILIENTHAL H, VERWER C M, Van den VEN L T M, et al. Exposure totetrabromobisphenol A (TBBPA) in Wistar rats:neurobehavioral effects in offspring from a one-generation reproduction study[J]. Toxicology, 2008, 246(1):45-54. doi: 10.1016/j.tox.2008.01.007
    [9]
    PULLEN S, BOECKER R G. The flame retardantstetrabromobisphenol A and tetrabromobisphenol A-bisallylether suppress the induction of interleukin-2 receptor alpha chain (CD25) in murine splenocytes[J]. Toxicology, 2003, 184(1):11-22. doi: 10.1016/S0300-483X(02)00442-0
    [10]
    SHIH Y H, HSU C Y, SU Y F. Reduction of hexachlorobenzene by nanoscale zero-valent iron:kinetics, pH effect, and degradation mechanism[J]. Separation & Purification Technology, 2011, 76(3):268-274. http://cn.bing.com/academic/profile?id=d4aeecc648d2b6297ab1b3e0547aeee5&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    ZHU B W, LIM T T, FENG J. Influences of amphiphiles on dechlorination of a trichlorobenzene by nanoscale Pd/Fe:adsorption, reaction kinetics, and interfacial interactions[J]. Environmental Science & Technology, 2008, 42(12):4513-4519. http://cn.bing.com/academic/profile?id=2877059b64da3c3ffc691cec99b0be86&encoded=0&v=paper_preview&mkt=zh-cn
    [12]
    LONG Y Y, ZHANG C, DU Y, et al. Enhanced reductive dechlorination of polychlorinated biphenyl-contaminated soil by in-vessel anaerobic composting with zero-valent iron[J]. Environmental Science & Pollution Research, 2014, 21(6):4783-4792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3b11b2aab474614ae234e59906d97b79
    [13]
    SHIH Y H, TAI Y T. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles[J]. Chemosphere, 2010, 78(10):1200-1206. http://cn.bing.com/academic/profile?id=d79ff34d41aacb5029aab4f26041bb8d&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    HUANG G F, WANG M M, HU Y Y, et al. Reductive degradation of 2, 2', 4, 4'-tretrabromodiphenyl ether with PAC-Pd/Fe nanoparticles:effects of Pd loading, initial pH and HA, and degradation pathway[J]. Chemical Engineering Journal, 2017, 334:1252-1259. http://cn.bing.com/academic/profile?id=387a84a059a814ddf390bd2e357d7d2b&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    LIN K, DING J, HUANG X. Debromination of tetrabromobisphenol A by nanoscale zerovalent iron:kinetics, influencing factors, and pathways[J]. Industrial & Engineering Chemistry Research, 2012, 51(25):8378-8385. http://cn.bing.com/academic/profile?id=789f3e1c95b0d42355149eb24fb79d1b&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    HUANG Q, LIU W, PENG P A, et al. Reductive debromination of tetrabromobisphenol A by Pd/Fe bimetallic catalysts[J]. Chemosphere, 2013, 92(10):1321-1327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a2d5c4310bdd6412b745fd76d2c28c06
    [17]
    WANG X, LAN L, ALVAREZ P J J, et al. Synthesis and characterization of green agents coated Pd/Fe bimetallic nanoparticles[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50:297-305. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6526f1761bcaa4d5d3bd1ae262b635e7
    [18]
    HUANG G F, WANG M M, HU Y Y, et al. Synthesis, characterization, and debromination reactivity of cellulose-stabilized Pd/Fe nanoparticles for 2, 2', 4, 4'-tretrabromodiphenyl ether[J]. Plos One, 2017, 12(3):1-17. http://cn.bing.com/academic/profile?id=43e0a34178ad335480e15e53f057a49a&encoded=0&v=paper_preview&mkt=zh-cn
    [19]
    CHO H H, PARK J W. Sorption and reduction of tetrachloroethylene with zero valent iron and amphiphilic molecules[J]. Chemosphere, 2006, 64(6):1047-1052. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af74057c2a99a996be4e6eeca0f15622
    [20]
    HE F, ZHAO D Y. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers[J]. Environmental Science & Technology, 2007, 41(17):6216-6221. http://cn.bing.com/academic/profile?id=dd1aea07ce0b77903db725d11303dcb0&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    LIN Y H, TSENG H H, WEY M Y, et al. Characteristics, morphology, and stabilization mechanism of PAA250k-stabilized bimetal nanoparticles[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2009, 349(1):137-144. http://cn.bing.com/academic/profile?id=25dbf2753d2fcff6f1e2da2051bf53f8&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    SAYLES G D, YOU G, WANG M, et al. DDT, DDD, and DDE dechlorination by zero-valent iron[J]. Environmental Science & Technology, 1997, 31(12):3448-3454. doi: 10.1021-es9701669/
    [23]
    ZHENG Z Q, LU G N, WANG R, et al. Effects of surfactant on the degradation of 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) by nanoscale Ag/Fe particles:kinetics, mechanisms and intermediates[J]. Environmental Pollution, 2019, 245:780-788. http://cn.bing.com/academic/profile?id=a41ba0a803c227e8044f33106b76465d&encoded=0&v=paper_preview&mkt=zh-cn
    [24]
    ZHANG M, HE F, ZHAO D, et al. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles:effects of sorption, surfactants, and natural organic matter[J]. Water Research, 2011, 45(7):2014-2417. http://cn.bing.com/academic/profile?id=9913bf9412d27b340db8bf490f1b1cac&encoded=0&v=paper_preview&mkt=zh-cn
    [25]
    LI Y, LI X Q, HAN D H, et al. New insights into the role of Ni loading on the surface structure and the reactivity of nZVI toward tetrabromo-and tetrachlorobisphenol A[J]. Chemical Engineering Journal, 2017, 311:173-182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d3e09f89ec3d2834f8cbcc1335e28de
    [26]
    LIANG D W, YANG Y H, XU WW, et al. Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron:mechanism and kinetics[J]. Journal of Hazardous Materials, 2014, 278:592-596. http://cn.bing.com/academic/profile?id=d6543d2910aeccc622fbf5f3811d1f22&encoded=0&v=paper_preview&mkt=zh-cn
  • Cited by

    Periodical cited type(5)

    1. 叶聪贤,毛婧芸,陈庆华,薛珲. 活性介质促进纸塑铝复合包材中纸纤维分离回收的研究. 福建师范大学学报(自然科学版). 2023(05): 42-49+82 .
    2. 景花,纪丽丽,周亚蕊,郭健,孙佳星,陆诗尧. 互花米草绿色合成ZnO纳米颗粒及其光催化和抑菌性能. 华南师范大学学报(自然科学版). 2022(02): 24-29 .
    3. 冯建海,韦衍学,唐光丽,李胜英. NiFe_2O_4的改性及光催化降解甲基橙试验研究. 湿法冶金. 2022(03): 248-253 .
    4. 吕贵方,吴颖欣,董长勋,卢阳,周玥,曾文军,吴文成. 腐殖酸和吐温-80对微米镍铁/多氯联苯体系的传质调控研究. 生态环境学报. 2022(07): 1456-1464 .
    5. 姜昭文,郑攀飞,郑继龙,冯树云,唐善法,金礼俊. 磺酸盐双子表面活性剂的合成及性能. 华南师范大学学报(自然科学版). 2021(05): 23-29 .

    Other cited types(5)

Catalog

    Article views (4658) PDF downloads (123) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return