Citation: | XU Qiqin, MA Guozheng, WU Baozhu, CHEN Hongyu. The Synthesis of S-ZnO/rGO Composite Material and the Cycle Performance of Lead Acid Battery[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 46-52. DOI: 10.6054/j.jscnun.2020026 |
[1] |
LAM L T, LOUEY R, HAIGH N P, et al. VRLA Ultrabattery for high-rate partial-state-of-charge operation[J]. Journal of Power Sources, 2007, 174:16-29. doi: 10.1016/j.jpowsour.2007.05.047
|
[2] |
NAKAMURA K, SHIOMI M, TAKAHASHI K, et al. Failure modes of valve-regulated lead/acid batteries[J]. Journal of Power Sources, 1996, 59:153-157. doi: 10.1016/0378-7753(95)02317-8
|
[3] |
SARAVANAN M, GANESAN M, AMBALAVANAN S. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery[J]. Journal of Power Sources, 2014, 251:20-29. doi: 10.1016/j.jpowsour.2013.10.143
|
[4] |
HARIPRAKASH B, GAFFOOR S A, SHUKLA A K. Lead-acid batteries for partial-state-of-charge applications[J]. Journal of Power Sources, 2009, 191:149-153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd8c8f8068b364f2475fc8c1407151b7
|
[5] |
BULLOCK K R. Carbon reactions and effects on valve-regulated lead-acid (VRLA) battery cycle life in high-rate, partial state-of-charge cycling[J]. Journal of Power Sources, 2010, 195:4513-4519. doi: 10.1016/j.jpowsour.2009.10.027
|
[6] |
TONG P, ZHAO R, ZHANG R, et al. Characterization of lead (Ⅱ)-containing activated carbon and its excellent performance of extending lead-acid battery cycle life for high-rate partial-state-of-charge operation[J]. Journal of Power Sources, 2015, 286:91-102. doi: 10.1016/j.jpowsour.2015.03.150
|
[7] |
SWOGGER S W, EVERILL P, DUBEY D P, et al. Discrete carbon nanotubes increase lead acid battery charge acceptance and performance[J]. Journal of Power Sources, 2014, 261:55-63. doi: 10.1016/j.jpowsour.2014.03.049
|
[8] |
GEIM A K, NOVOSELOY K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-91. doi: 10.1038/nmat1849
|
[9] |
孙丰强, 陈颖.三维结构化石墨烯及其复合材料[J].华南师范大学学报(自然科学版), 2016, 48(5):19-24. doi: 10.6054/j.jscnun.2016.05.001
SUN F Q, CHEN Y. Three-dimentionally structured graphene and its composites[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(5):19-24. doi: 10.6054/j.jscnun.2016.05.001
|
[10] |
WANG M, TANG M, CHEN S, et al. Graphene-armored aluminum foil with enhanced anticorrosion performance as current collectors for lithium-ion battery[J]. Advanced Materials, 2017, 29:1703882/1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2beaa18f8449465fca756c4d12af9307
|
[11] |
YEUNG K K, ZHANG X, KWOK S C T, et al. Enhanced cycle life of lead-acid battery using graphene as a sulfation suppression additive in negative active material[J]. RSC Advances. 2015, 5:71314-71321. doi: 10.1039/C5RA11114E
|
[12] |
LONG Q, MA G, XU Q, et al. Improving the cycle life of lead-acid batteries using three-dimensional reduced graphene oxide under the high-rate partial-state-of-charge condition[J]. Journal of Power Sources, 2017, 343:188-196. doi: 10.1016/j.jpowsour.2017.01.056
|
[13] |
FANG M, WANG K, LU H, et al. Covalent polymer functionalization of graphene nanosheets and mechanical pro-perties of composites[J]. Journal of Materials Chemistry, 2009, 19(38):7098-7105. doi: 10.1039/b908220d
|
[14] |
PERKINS C, LICHTY P R, WEIMER A W. Thermal ZnO dissociation in a rapid aerosol reactor as part of a solar hydrogen production cycle[J]. International Journal of Hydrogen Energy, 2008, 33(2):499-510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e842a718fbc0cff6056f18aa671d3e94
|
[15] |
CHEN M N, ZHANG D Y, THOMPSON L T, et al. Catalytic properties of Ag promoted ZnO/Al2O3 catalysts for hydrogen production by steam reforming of ethanol[J]. International Journal of Hydrogen Energy, 2011, 36(13):7516-7522. doi: 10.1016/j.ijhydene.2011.03.128
|
[16] |
YEO J S, KANG R, LEE S, et al. Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer[J]. Nano Energy, 2015, 12(12):96-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=98af997c2c72ae80dc8da0f4da1c61fb
|
[17] |
ZHANG Q, DANDENEAU C S, ZHOU X, et al. ChemInform abstract:ZnO nanostructures for dye-sensitized solar cells[J]. Cheminform, 2010, 41(2):4087-4108. doi: 10.1002/adma.200803827
|
[18] |
BAXTERR J B, AYDIL E S. Nanowire-based dye-sensitized solar cells[J]. Applied Physics Letters, 2005, 86(5):053114/1-3. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229099307/
|
[19] |
FLEISCHHAKER F, WLOKA V, HENNIG I. ZnO based field-effect transistors (FETs):solution-processable at low temperatures on flexible substrates[J]. Journal of Materials Chemistry, 2010, 20(32):6622-6625. doi: 10.1039/c0jm01477j
|
[20] |
ZHANG H, WU R, CHEN Z, et al. Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sensing properties[J]. CrystEngComm, 2012, 14(5):1775-1782. doi: 10.1039/c1ce06163a
|
[21] |
XU F, YUAN Y, HAN H, et al. Synthesis of ZnO/CdS hierarchical heterostructure with enhanced photocatalytic efficiency under nature sunlight[J]. CrystEngComm, 2012, 14(10):3615-3622. doi: 10.1039/c2ce06267d
|
[22] |
FANG J, FAN H, DONG G. A facile way to synthesize cost-effective ZnO nanorods with enhanced photocatalytic activity[J]. Materials Letters, 2014, 120:147-150. doi: 10.1016/j.matlet.2014.01.043
|
[23] |
CHEN D, ZHAO Y, CHEN Y, et al. One-step chemical synthesis of ZnO/graphene oxide molecular hybrids for high temperature thermoelectric applications[J]. ACS Applied Materials & Interfaces, 2015, 7(5):3224-3230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=651d94fab284ce477e8f7cd94d89a50d
|
[24] |
HUMMERS W S, OFFEMAN R. Preparation of graphitic oxide[J]. Journal of America Chemistry Society Journal of the American Chemical Society[J]. 1958, 80(6): 1339-1339. doi: 10.1021/ja01539a017
|
[25] |
SUN J H, DONG S Y, WANG Y K, et al. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst[J]. Journal of Hazardous Materials, 2009, 172(2):1520-1526. doi: 10.1016-j.jhazmat.2009.08.022/
|
[26] |
EBNER E, BUROW D, PANKE J, et al. Carbon blacks for lead-acid batteries in micro-hybrid applications-studied by transmission electron microscopy and Raman spectroscopy[J]. Journal of Power Sources, 2013, 222:554-560. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=03b26a9ca926520a2399027a692421f2
|