• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LIU Chengyi, TANG Lu, SUN Shasha, BAI Muwei, GONG Yanchun, LIN Haiqi. The Mechanism of Esport Influencing Cognitive Function[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 1-8. DOI: 10.6054/j.jscnun.2020019
Citation: LIU Chengyi, TANG Lu, SUN Shasha, BAI Muwei, GONG Yanchun, LIN Haiqi. The Mechanism of Esport Influencing Cognitive Function[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 1-8. DOI: 10.6054/j.jscnun.2020019

The Mechanism of Esport Influencing Cognitive Function

More Information
  • Received Date: November 29, 2019
  • Available Online: March 21, 2021
  • As one of the emerging sports, Esport has attracted more and more attention. The impact of Esport on health is a topic of interest to researchers. In recent years, the relationship between habitual Esport and cognitive abilities had become a hot topic of research. Through a review of research progress in this field, it was found that habitual Esport could enhance cognitive function, mainly through the improvement of attention function, visual space function and cognitive control function, the increase of cognitive load, the acceleration of skill acquisition, and rewards processing enhancement. The results confirm the plasticity of the brain and show that habitual Esport can help people learn and work more effectively.
  • [1]
    杨越.新时代电子竞技和电子竞技产业研究[J].体育科学, 2018, 38(4):8-21. doi: 10.3969/j.issn.1004-3624.2018.04.002

    YANG Y. Research on Esports and Esports industry in the new era[J]. China Sport Science, 2018, 38(4):8-21. doi: 10.3969/j.issn.1004-3624.2018.04.002
    [2]
    王东辉, 吴菲菲, 王圣明, 等.人类脑科学研究计划的进展[J].中国医学创新, 2019, 16(7):168-172. http://d.old.wanfangdata.com.cn/Periodical/zgyxcx201907044

    WU D H, WU F F, WANG S M, et al. Progress of human brain science research program[J]. Medical Innovation of China, 2019, 16(7):168-172. http://d.old.wanfangdata.com.cn/Periodical/zgyxcx201907044
    [3]
    ANGUERA J A, BOCCANFUSO J, RINTOUL J L, et al. Video game training enhances cognitive control in older adults[J]. Nature, 2013, 501:97-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=87e6cb2e8107399f21179ede69c39514
    [4]
    BAVELIER D, DAVIDSON R J. Games to do you good[J]. Nature, 2013, 494:425-426. doi: 10.1038/494425a
    [5]
    MAARTEN B J, JETSE G, ERIK H, et al. The effects of video games on laparoscopic simulator skills[J]. American Journal of Surgery, 2014, 208(1):151-156. doi: 10.1016/j.amjsurg.2013.11.006
    [6]
    LI L, CHEN R, CHEN J. Playing action video games improves visuomotor control[J]. Psychological Science, 2016, 27(8):1092-1098. doi: 10.1177/0956797616650300
    [7]
    GAMBACORTA C, NAHUM M, VEDAMURTHY I, et al. An action video game for the treatment of amblyopia in children:a feasibility study[J]. Vision Research, 2018, 148:1-14. doi: 10.1016/j.visres.2018.04.005
    [8]
    VOSSEL S, GENG J J, FINK G R. Dorsal and ventral attention systems:distinct neural circuits but collaborative roles[J]. Neuroscientist, 2014, 20(2):150-159. doi: 10.1177/1073858413494269
    [9]
    BAVELIER D, ACHTMAN R, MANI M, et al. Neural bases of selective attention in action video game players[J]. Vision Research, 2012, 61:132-143. doi: 10.1016/j.visres.2011.08.007
    [10]
    BAVELIER D, SHAWN G C, POUGET A, et al. Brain plasticity through the life span:learning to learn and action video games[J]. Annual Review of Neuroscience, 2012, 35:391-416. doi: 10.1146/annurev-neuro-060909-152832
    [11]
    PRAKASH R S, LEON A A D, MOURANY L, et al. Examining neural correlates of skill acquisition in a complex videogame training program[J]. Frontiers in Human Neuroscience, 2012, 6:115/1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003593484
    [12]
    STRENZIOK M, PARASURAMAN R, CLARKE E, et al. Neurocognitive enhancement in older adults:comparison of three cognitive training tasks to test a hypothesis of training transfer in brain connectivity[J]. NeuroImage, 2014, 85:1027-1039. doi: 10.1016/j.neuroimage.2013.07.069
    [13]
    GONG D, HE H, MA W, et al. Functional integration between salience and central executive networks:a role for action video game experience[J]. Neural Plasticity, 2016, 2016:9803165/1-9. http://cn.bing.com/academic/profile?id=84e2ab9f218ce27a005123f7ae4ee7e5&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    GREEN C S, BAVELIER D. Action video game modifies visual selective attention[J]. Nature, 2003, 423:534-537. doi: 10.1038/nature01647
    [15]
    KAUFMAN L D, PRATT J, LEVINE B, et al. Executive deficits detected in mild Alzheimer's disease using the antisaccade task[J]. Brain and Behavior, 2012, 2(1):15-21. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3343295
    [16]
    PALAUS M, MARRON E M, VIEJO-SOBERA R, et al. Neural basis of video gaming:a Systematic review[J]. Frontiers in Human Neuroscience, 2017, 11:248/1-40. http://cn.bing.com/academic/profile?id=4016afbb86ad167ee74d2051ac029f5a&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    KRAVITZ D J, SALEEM K S, BAKER C I, et al. A new neural framework for visuospatial processing[J]. Nature Reviews Neuroscience, 2011, 12(4):217-230. doi: 10.1038/nrn3008
    [18]
    LEE A, YEUNG L, BARENSE M. The hippocampus and visual perception[J]. Frontiers in Human Neuroscience, 2012, 6:91/1-17. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3328126
    [19]
    KVHN S, GALLINAT J. Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume[J]. Molecular Psychiatry, 2014, 19(7):842-847. doi: 10.1038/mp.2013.100
    [20]
    SCHMIDT-HIEBER C, HÄUSSER M. Cellular mechanisms of spatial navigation in the medial entorhinal cortex[J]. Nature Neuroscience, 2013, 16(3):325-331. doi: 10.1038/nn.3340
    [21]
    MILLER J F, FRIED I, SUTHANA N, et al. Repeating spatial activations in human entorhinal cortex[J]. Current Biology, 2015, 25(8):1080-1085. doi: 10.1016/j.cub.2015.02.045
    [22]
    KVHN S, GLEICH T, LORENZ R C, et al. Playing super mario induces structural brain plasticity:gray matter changes resulting from training with a commercial video game[J]. Molecular Psychiatry, 2014, 19(2):265-271. doi: 10.1038/mp.2013.120
    [23]
    VOGAN V M, MORGAN B R, POWELL T L, et al. The neurodevelopmental differences of increasing verbal working memory demand in children and adults[J]. Developmental Cognitive Neuroscience, 2016, 17:19-27. doi: 10.1016/j.dcn.2015.10.008
    [24]
    BARROUILLET P, BERNARDIN S, PORTRAT S, et al. Time and cognitive load in working memory[J]. Journal of experimental psychology:learning, memory and cognition, 2007, 33(3):570-585. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3078384
    [25]
    BROOKINGS J, WILSON G, SWAIN C. Psychophysiological responses to changes in workload during simulated air traffic control[J]. Biological Psychology, 1996, 42(3):361-377. doi: 10.1016/0301-0511(95)05167-8
    [26]
    SHEIKHOLESLAMI C, YUAN H, HE E, et al. A high resolution EEG study of dynamic brain activity during video game play[C] //Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2007: 2489-2491.
    [27]
    IZZETOGLU K, BUNCE S, ONARAL B, et al. Functional optical brain imaging using near-infrared during cognitive tasks[J]. International Journal of Human-Computer Interaction, 2004, 17(2):211-227. doi: 10.1207/s15327590ijhc1702_6
    [28]
    MCMAHAN T, PARBERRY I, PARSONS T D. Modality specific assessment of video game player's experience using the Emotiv[J]. Entertainment Computing, 2015, 7:1-6. doi: 10.1016/j.entcom.2015.03.001
    [29]
    IACCARINO H F, SINGER A C, MARTORELL A J, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia[J]. Nature, 2016, 540:230-235. doi: 10.1038/nature20587
    [30]
    MANDREKAR S, JIANG Q, LEE C Y D, et al. Microglia mediate the clearance of soluble β through fluid phase macropinocytosis[J]. Journal of Neuroscience, 2009, 29(13):4252-4262. doi: 10.1523/JNEUROSCI.5572-08.2009
    [31]
    OBESO I, ROBLES N, MARRÓN E M, et al. Dissociating the role of the pre-SMA in response inhibition and swit-ching:a combined online and offline TMS approach[J]. Frontiers in Human Neuroscience, 2013, 7:150/1-9. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3629293
    [32]
    NACHEV P, KENNARD C, HUSAIN M. Functional role of the supplementary and pre-supplementary motor areas[J]. Nature Reviews Neuroscience, 2008, 9(11):856-869. doi: 10.1038/nrn2478
    [33]
    ALVAREZ J A, EMORY E. Executive function and the frontal lobes:a meta-analytic review[J]. Neuropsycho-logy Review, 2006, 16(1):17-42. doi: 10.1007-s11065-006-9002-x/
    [34]
    KVHN S, LORENZ R, BANASCHEWSKI T, et al. Positive association of video game playing with left frontal cortical thickness in adolescents[J]. PLoS One, 2014, 9(3):e91506/1-6. http://cn.bing.com/academic/profile?id=944febb9195e344c1450fb6fffcc4131&encoded=0&v=paper_preview&mkt=zh-cn
    [35]
    GLEICH T, LORENZ R C, GALLINAT J, et al. Functional changes in the reward circuit in response to gaming-related cues after training with a commercial video game[J]. Neuroimage, 2017, 152:467-475. doi: 10.1016/j.neuroimage.2017.03.032
    [36]
    WEST G, ZENDEL B, KONISHI K, et al. Playing Super Mario 64 increases hippocampal grey matter in older adults[J]. PLoS One, 2017, 12(12):e0187779/1-7. http://cn.bing.com/academic/profile?id=fcf79beaf8d8a4efa8af73d6cb67575b&encoded=0&v=paper_preview&mkt=zh-cn
    [37]
    SMITH E E, JONIDES J. Storage and executive processes in the frontal lobes[J]. Science, 1999, 283:1657-1661. http://cn.bing.com/academic/profile?id=ec42d80cd21f220b3578d4c1eb6711c1&encoded=0&v=paper_preview&mkt=zh-cn
    [38]
    KUMAR S, ZOMORRODI R, GHAZALA Z, et al. Extent of dorsolateral prefrontal cortex plasticity and its association with working memory in patients with Alzheimer disease[J]. JAMA Psychiatry, 2017, 74(12):1266-1274. doi: 10.1001/jamapsychiatry.2017.3292
    [39]
    BADDELEY A D, BRESSI S, SALA S D, et al. The decline of working memory in Alzheimer's disease[J]. Brain, 1991, 114(6):2521-2542. doi: 10.1093/brain/114.6.2521
    [40]
    HUNTLEY J D, HOWARD R J. Working memory in early Alzheimer's disease:a neuropsychological review[J]. International Journal of Geriatric Psychiatry, 2010, 25(2):121-132. doi: 10.1002/gps.2314
    [41]
    VOYTEK B, DAVIS M, YAGO E, et al. Dynamic neuroplasticity after human prefrontal Cortex damage[J]. Neuron, 2010, 68(3):401-408. doi: 10.1016/j.neuron.2010.09.018
    [42]
    SUSANNE J V V, SAWYER E K, CLOVER L, et al. Prefrontal cortex cytoarchitecture in normal aging and Alzheimer's disease:a relationship with IQ[J]. Brain Structure and Function, 2012, 217(4):797-808. doi: 10.1007/s00429-012-0381-x
    [43]
    BISWAL B B, ELDRETH D A, MOTES M A, et al. Task-dependent individual differences in prefrontal connectivity[J]. Cerebral Cortex, 2010, 20(9):2188-2197. doi: 10.1093/cercor/bhp284
    [44]
    MATSUDA G, HIRAKI K. Prefrontal Cortex deactivation during video game play[J]. Gaming, Simulations, and Society, 2005, 153:101-109. http://cn.bing.com/academic/profile?id=22cee32beead6cf0e404d3062c0433ae&encoded=0&v=paper_preview&mkt=zh-cn
    [45]
    NAGAMITSU S, NAGANO M, YAMASHITA Y, et al. Prefrontal cerebral blood volume patterns while playing video games:a near-infrared spectroscopy study[J]. Brain and Development, 2006, 28(5):315-321. doi: 10.1016/j.braindev.2005.11.008
    [46]
    QUIROGA R Q, REDDY L, KREIMAN G, et al. Invariant visual representation by single neurons in the human brain[J]. Nature, 2005, 435:1102-1107. doi: 10.1038/nature03687
    [47]
    GOBEL E W, PARRISH T B, REBER P J. Neural correlates of skill acquisition:decreased cortical activity during a serial interception sequence learning task[J]. NeuroImage, 2011, 58(4):1150-1157. doi: 10.1016/j.neuroimage.2011.06.090
    [48]
    ERICKSON K I, BOOT W R, BASAK C, et al. Striatal volume predicts level of video game skill acquisition[J]. Cerebral Cortex, 2010, 20(11):2522-2530. doi: 10.1093/cercor/bhp293
    [49]
    VO L, WALTHER D, KRAMER A, et al. Predicting individuals' learning success from patterns of pre-learning MRI activity[J]. PLoS One, 2011, 6(1):e16093/1-9. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3021541
    [50]
    KOEPP M J, GUNN R N, LAWRENCE A D, et al. Evidence for striatal dopamine release during a video game[J]. Nature, 1998, 393:266-268. doi: 10.1038/30498
    [51]
    ANDERSON J R, BOTHELL D, FINCHAM J M, et al. The sequential structure of brain activation predicts skill[J]. Neuropsychologia, 2016, 81:94-106. doi: 10.1016/j.neuropsychologia.2015.12.014
    [52]
    HABER S N. Neuroanatomy of reward:a view from the ventral striatum:Neurobiology of sensation and reward[M]. Bethesda MD:NCBI Bookshelf, 2011:1-27.
    [53]
    VOLKOW N D, WANG G J, FOWLER J S, et al. Addiction:decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit[J]. BioEssays, 2010, 32(9):748-755. doi: 10.1002/bies.201000042
    [54]
    HEINZ A, BECK A, GRVSSER S M, et al. Identifying the neural circuitry of alcohol craving and relapse vulnerabi-lity[J]. Addiction Biology, 2009, 14(1):108-118. doi: 10.1111/j.1369-1600.2008.00136.x
    [55]
    FENG Q, CHEN X, SUN J, et al. Voxel-level comparison of arterial spin-labeled perfusion magnetic resonance imaging in adolescents with internet gaming addiction[J]. Behavioral and Brain Functions, 2013, 9:33/1-11. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3751515
    [56]
    KO C, LIU G, YEN J, et al. Brain correlates of craving for online gaming under cue exposure in subjects with Internet gaming addiction and in remitted subjects[J]. Addiction Biology, 2013, 18(3):559-569. doi: 10.1111/j.1369-1600.2011.00405.x
    [57]
    JIN C, ZHANG T, CAI C, et al. Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder[J]. Brain Imaging and Behavior, 2016, 10(3):719-729. doi: 10.1007/s11682-015-9439-8
    [58]
    WITTMANN B C, SCHOTT B H, GUDERIAN S, et al. Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation[J]. Neuron, 2005, 45(3):459-467. doi: 10.1016/j.neuron.2005.01.010
    [59]
    ADCOCK R A, THANGAVEL A, WHITFIELD-GABRIELI S, et al. Reward-motivated learning:mesolimbic activation precedes memory formation[J]. Neuron, 2006, 50(3):507-517. doi: 10.1016/j.neuron.2006.03.036
    [60]
    FENG J, SPENCE I, PRATT J. Playing an action video game reduces gender differences in spatial cognition[J]. Psychological Science, 2007, 18(10):850-855. doi: 10.1111/j.1467-9280.2007.01990.x
    [61]
    DYE M, BAVELIER D. Differential development of visual attention skills in school-age children[J]. Vision Research, 2010, 50(4):452-459. doi: 10.1016/j.visres.2009.10.010
    [62]
    WANG P, LIU H, ZHU X, et al. Action video game training for healthy adults:a meta-analytic study[J]. Frontiers in Psychology, 2016, 7:907/1-17. http://cn.bing.com/academic/profile?id=1d37c1ba3ba0ab487f21e1787ff612e2&encoded=0&v=paper_preview&mkt=zh-cn
    [63]
    POWERS K L, BROOKS P J, ALDRICH N J, et al. Effects of video-game play on information processing:a meta-analytic investigation[J]. Psychonomic Bulletin and Review, 2013, 20(6):1055-1079. doi: 10.3758/s13423-013-0418-z
    [64]
    田麦久, 麻雪田, 黄新河, 等.项群训练理论及其应用[J].体育科学, 1990(6):29-35. http://www.cnki.com.cn/Article/CJFD1990-TYKX199006008.htm

    TIAN M J, MA X T, HUANG XH, et al. The training theory of sports group and its application[J]. China Sport Science, 1990(6):29-35. http://www.cnki.com.cn/Article/CJFD1990-TYKX199006008.htm
    [65]
    JASSAL D S, MOFFAT D, KRAHN J, et al. Cardiac injury markers in non-elite marathon runners[J]. International Journal of Sports Medicine, 2009, 30(2):75-79. doi: 10.1055/s-0028-1104572
    [66]
    FREDERICSON M, MISRA A K. Epidemiology and aetiology of marathon running injuries[J]. Sports Medicine, 2007, 37(4/5):437-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b2fdc13ea2413de730f1e83de1dad35b
    [67]
    HAMLIN M J, LIZAMORE C A, HOPKINS W G. The effect of natural or simulated altitude training on high-intensity intermittent running performance in team-sport athletes:a meta-analysis[J]. Sports Medicine, 2018, 42(2):431-446. http://cn.bing.com/academic/profile?id=d7745aa0aa3be6d30c2f7cab90c6dfba&encoded=0&v=paper_preview&mkt=zh-cn
    [68]
    STOCKDALE L, COYNE S M. Video game addiction in emerging adulthood:cross-sectional evidence of pathology in video game addicts as compared to matched healthy controls[J]. Journal of Affective Disorders, 2018, 255:265-272. http://cn.bing.com/academic/profile?id=baf4b4c63b16b84b33298f5c1427ab10&encoded=0&v=paper_preview&mkt=zh-cn
    [69]
    EVREN B, EVREN C, DALBUDAK E, et al. The impact of depression, anxiety, neuroticism, and severity of Internet addiction symptoms on the relationship between probable ADHD and severity of insomnia among young adults[J]. Psychiatry Research, 2019, 271:726-731. doi: 10.1016/j.psychres.2018.12.010
    [70]
    OWEN A M, HAMPSHIRE A, GRAHN J A, et al. Putting brain training to the test[J]. Nature, 2010, 465:775-778. doi: 10.1038/nature09042
    [71]
    RAICHLE M E, MACLEOD A M, SNYDER A Z, et al. A default mode of brain function[J]. Proceedings of the national academy of science of the United States of America, 2001, 98(2):676-682. doi: 10.1073/pnas.98.2.676
    [72]
    DENNIS E L, THOMPSON P M. Functional brain connectivity using fMRI in aging and Alzheimer's disease[J]. Neuropsychology Review, 2014, 24(1):49-62. doi: 10.1007/s11065-014-9249-6
    [73]
    HUSKEY R, CRAIGHEAD B, MILLER M B, et al. Does intrinsic reward motivate cognitive control? a naturalistic-fMRI study based on the synchronization theory of flow[J]. Cognitive, Affective & Behavioral Neuroscience, 2018, 18(5):902-924. http://cn.bing.com/academic/profile?id=ab92d7a8ea1df8a244eaea3f07a47b2d&encoded=0&v=paper_preview&mkt=zh-cn
    [74]
    ULRICH M, KELLER J, GRÖN G. Dorsal raphe nucleus down-regulates medial prefrontal Cortex during experience of flow[J]. Frontiers in Behavioral Neuroscience, 2016, 10:169/1-9. http://cn.bing.com/academic/profile?id=0c5297b103968b0f45992a6a1441add1&encoded=0&v=paper_preview&mkt=zh-cn
    [75]
    LIU T C Y, TANG X M, DUAN R, et al. The mitochondrial Na+/Ca2+ exchanger is necessary but not sufficient for Ca2+ homeostasis and viability[J]. Advances in Experimental Medicine and Biology, 2018, 1072:281-285. doi: 10.1007/978-3-319-91287-5_45
    [76]
    LILJEHOLM M, DUNNE S, O'DOHERTY J. Differentiating neural systems mediating the acquisition vs. expression of goal-directed and habitual behavioral control[J]. European Journal of Neuroscience, 2015, 41(10):1358-1371. doi: 10.1111/ejn.12897
    [77]
    HERCULANO-HOUZEL S. Coordinated scaling of cortical and cerebellar numbers of neurons[J]. Frontiers in Neuroanatomy, 2010, 4(12):1-8. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2839851
    [78]
    VANDERVERT L. The prominent role of the cerebellum in the learning, origin and advancement of culture[J]. Cerebellum & Ataxias, 2016, 3(1):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=WK_MED201912251464
    [79]
    WAGNER M J, KIM T H, SAVALL J, et al. Cerebellar granule cells encode the expectation of reward[J]. Nature, 2017, 544:96-100. doi: 10.1038/nature21726
    [80]
    LIU T, WU D, ZHU L, et al. Microenvironment dependent photobiomodulation on function-specific signal transduction pathways[J]. International Journal of Photoenergy, 2014, 2014:904304/1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eba8053edca39d839e50453c6e212071
    [81]
    LIU C, LIU G, HU S, et al. Quantitative biology of exercise-induced signal transduction pathways[J]. Advances in Experimental Medicine & Biology, 2017, 977:419-424. doi: 10.1007/978-3-319-55231-6_54

Catalog

    Article views (3061) PDF downloads (138) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return