• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YANG Hong, ZHOU Shangzhe. Application of Uranium Disequilibrium in the Study of the Weathering Rate of the Granite in Northern Guangdong[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 84-91. DOI: 10.6054/j.jscnun.2019088
Citation: YANG Hong, ZHOU Shangzhe. Application of Uranium Disequilibrium in the Study of the Weathering Rate of the Granite in Northern Guangdong[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 84-91. DOI: 10.6054/j.jscnun.2019088

Application of Uranium Disequilibrium in the Study of the Weathering Rate of the Granite in Northern Guangdong

More Information
  • Received Date: January 13, 2019
  • Available Online: March 08, 2021
  • In order to explore the geomorphological evolution and climatic environment changes in the chemical weathering process of the granites in northern Guangdong, Jinjiang River Basin is selected as the research area and the uranium-series isotopes disequilibrium method is used to measure the uranium concentration and 234U/238U activity ratios of river water, weathering crust and rock in the basin and calculate of chemical weathering rate of grani-te in the basin. As the results show, under the current climatic conditions, the chemical weathering rate of the grani-te weathering crust with the CIA of 86.84 is 0.038 mm/year, which means that it will take about 26 000 years for 1 m thick granite to weather; in the tropical and subtropical regions, and the main factor for rock weathering is the climate conditions with high temperature and humidity. Uranium isotopes disequilibrium can be used to quantitatively evaluate the interaction among water, soil and rock under weathering, and it also provides a new means for research on rock weathering and earth surface processes.
  • [1]
    席承藩.论华南红色风化壳[J].第四纪研究, 1991(1):1-8. doi: 10.3321/j.issn:1001-7410.1991.01.001

    XI C F. On the red weathering crusts of southern China[J]. Quaternary Sciences, 1991(1):1-8. doi: 10.3321/j.issn:1001-7410.1991.01.001
    [2]
    RIEBE C S, KIRCHNER J W, FINKEL R C. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes[J]. Earth and Planetary Science Letters, 2004, 224(3/4):547-562. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b475e8cc350fae5b647c7e501fa68a2
    [3]
    NUGENT M A, BRANTLEY S L, PANTANO C G, et al. The influence of natural mineral coatings on feldspar weathering[J]. Nature, 1998, 395:588-591. doi: 10.1038/26951
    [4]
    SVERDRUP H, WARFVINGE P. Calculating field weathe-ring rates using a mechanistic geochemical model PROFILE[J]. Applied Geochemistry, 1993, 8(3):273-283. doi: 10.1016/0883-2927(93)90042-F
    [5]
    PACHECO F A L, VAN DER WEIJDEN C H. Integrating topography, hydrology and rock structure in weathering rate models of spring watersheds[J]. Journal of Hydrology, 2012, 428:32-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5efe2ef3b361b19284600f9a198aa02c
    [6]
    续海金, 马昌前.地壳风化速率研究综述[J].地球科学进展, 2002, 17(5):670-678. doi: 10.3321/j.issn:1001-8166.2002.05.007

    XU H J, MA C Q. Review on weathering rates in the crust weathering system[J]. Advance in Earth Sciences, 2002, 17(5):670-678. doi: 10.3321/j.issn:1001-8166.2002.05.007
    [7]
    黄来明, 邵明安, 贾小旭, 等.土壤风化速率测定方法及其影响因素研究进展[J].地球科学进展, 2016, 31(10):1021-1031. doi: 10.11867/j.issn.1001-8166.2016.10.1021

    HUANG L M, SHAO M A, JIA X X, et al. A review of the methods and controls of soil weathering rates[J]. Advances in Earth Science, 2016, 31(10):1021-1031. doi: 10.11867/j.issn.1001-8166.2016.10.1021
    [8]
    GAO Q Z, TAO Z, HUANG X K, et al. Chemical weathering and CO2 consumption in the Xijiang River basin, South China[J]. Geomorphology, 2009, 106(3/4):324-332. doi: 10.1016-j.geomorph.2008.11.010/
    [9]
    李团结, 马玉, 刘昆.热带花岗岩海岛的化学风化及其环境效应——以东澳岛为例[J].环境化学, 2015, 34(8):1490-1497. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx201508014

    LI T J, MA Y, LIU K. Chemical weathering and its environmental effects of tropical granite island:a case study in DongAo Island[J].Environmental Chemistry, 2015, 34(8):1490-1497. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx201508014
    [10]
    MA J L, WEI G J, XU Y G, et al. Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China[J]. Geochimica et Cosmochimica Acta, 2007, 71(13):3223-3237. doi: 10.1016/j.gca.2007.03.035
    [11]
    FLEISCHER R L. Isotopic disequilibrium of uranium:alpha-recoil damage and preferential solution effects[J]. Science, 1980, 207:979-981. doi: 10.1126/science.207.4434.979
    [12]
    OSMOND J K, RYDELL H S, KAUFMAN M I. Uranium disequilibrium in groundwater:an isotope dilution approach in hydrologic investigations[J]. Science, 1968, 162:997-999. doi: 10.1126/science.162.3857.997
    [13]
    OSMOND J K, IVANOVICH M. Uranium-series mobilization and surface hydrology[M]. 2nd ed. Uranium-series disequilibrium:applications to earth, marine, and environmental sciences. Oxford:Clarendon Press, 1992:259-289.
    [14]
    CARROLL J L, MOORE W S. Uranium removal during low discharge in the Ganges-Brahmaputra mixing zone[J]. Geochimica et Cosmochimica Acta, 1993, 57(21/22):4987-4995. http://cn.bing.com/academic/profile?id=32f72aee797bfc8002af2dc64c104aea&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    BANNER J L. Radiogenic isotopes:systematics and applications to earth surface processes and chemical stratigraphy[J]. Earth-Science Reviews, 2004, 65(3/4):141-194. https://www.sciencedirect.com/science/article/abs/pii/S0012825203000862
    [16]
    RIOTTE J, CHABAUX F. (234U/238U) activity ratios in freshwaters as tracers of hydrological processes:the Streng-bach watershed(Vosges, France)[J]. Geochimica et Cosmochimica Acta, 1999, 63(9):1263-1275. doi: 10.1016/S0016-7037(99)00009-5
    [17]
    CHABAUX F, RIOTTE J, SCHMITT A D, et al. Variations of U and Sr isotope ratios in Alsace and Luxembourg rain waters:origin and hydrogeochemical implications[J]. Com-ptes Rendus Geoscience, 2005, 337(16):1447-1456. doi: 10.1016/j.crte.2005.07.008
    [18]
    MOREIRA-NORDEMANN L M. Use of 234U/238U disequilibrium in measuring chemical weathering rate of rocks[J]. Geochimica et Cosmochimica Acta, 1980, 44(1):103-108. doi: 10.1016/0016-7037(80)90180-5
    [19]
    陈振宇, 黄国龙, 朱捌, 等.南岭地区花岗岩型铀矿的特征及其成矿专属性[J].大地构造与成矿学, 2014, 38(2):264-275. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201402006

    CHEN Z Y, HUANG G L, ZHU B, et al. The characteristics and metallogenic specialization of granite-hosted uranium deposits in the Nanling Region[J]. Geotectonica et Metallogenia, 2014, 38(2):264-275. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201402006
    [20]
    王振民, 郭日恒, 傅叙.区域地质调查报告韶关幅[M].广州:广东省地质局, 1982:11-392.
    [21]
    王文星, 陈洁雯, 钟立华, 等.仁化县气候季节变化特征分析[J].广东气象, 2016, 38(5):37-41. doi: 10.3969/j.issn.1007-6190.2016.05.009

    WANG W X, CHEN J W, ZHONG L H, et al. Analysis of the characteristics of seasonal variation of the climate of Renhua County[J]. Guangdong Qixiang, 2016, 38(5):37-41. doi: 10.3969/j.issn.1007-6190.2016.05.009
    [22]
    彭华, 刘盼, 张桂花.中国东南部丹霞地貌区小尺度植被分异结构研究[J].地理科学, 2018, 38(6):944-953. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201806014

    PENG H, LIU P, ZHANG G H. Small scale vegetation di-fferentiation structure in Danxia Landforms, Southeast China[J]. Scientia Geographica Sinica, 2018, 38(6):944-953. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201806014
    [23]
    LANGMUIR D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits[J]. Geochimica et Cosmochimica Acta, 1978, 42(6):547-569. doi: 10.1016/0016-7037(78)90001-7
    [24]
    LANGMUIR D, HERMAN J S. The mobility of thorium in natural waters at low temperatures[J]. Geochimica et Cosmochimica Acta, 1980, 44(11):1753-1766. doi: 10.1016/0016-7037(80)90226-4
    [25]
    CHABAUX F, DEQUINCEY O, LÉVČQUE J J, et al. Tra-cing and dating recent chemical transfers in weathering pro-files by trace-element geochemistry and 238U-234U-230Th disequilibria:the example of the Kaya lateritic toposequence(Burkina-Faso)[J]. Comptes Rendus Geoscience, 2003, 335(16):1219-1231. doi: 10.1016/j.crte.2003.10.007
    [26]
    ROSHOLT J N, DOE B R, TATSUMOTO M. Evolution of the isotopic composition of uranium and thorium in soil profiles[J]. Geological Society of America Bulletin, 1966, 77(9):987-1004. doi: 10.1130/0016-7606(1966)77[987:EOTICO]2.0.CO;2
    [27]
    LATHAM A G, SCHWARCZ H P. On the possibility of determining rates of removal of uranium from crystalline igneous rocks using U-series disequilibria—1:a U-leach model, and its applicability to whole-rock data[J]. App-lied geochemistry, 1987, 2(1):55-65. doi: 10.1016/0883-2927(87)90060-6
    [28]
    LATHAM A G, SCHWARCZ H P. On the possibility of determining rates of removal of uranium from crystalline igneous rocks using U-series disequilibria—2:applicability of a U-leach model to mineral separates[J]. Applied Geochemistry, 1987, 2(1):67-71. doi: 10.1016/0883-2927(87)90061-8
    [29]
    MA L, CHABAUX F, PELT E, et al. Regolith production rates calculated with uranium-series isotopes at Susquehanna/Shale Hills Critical Zone Observatory[J]. Earth and Planetary Science Letters, 2010, 297(1/2):211-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a9871fb418821f22206c01ab1540d995
    [30]
    叶永钦, 叶松鑫, 许幼, 等.粤北长江铀矿田长排地区花岗岩体地球化学特征及其意义[J].地球科学与环境学报, 2015, 37(6):101-110. doi: 10.3969/j.issn.1672-6561.2015.06.009

    YE Y Q, YE S X, XU Y, et al. Geochemical characteristics of granite body in Changpai area of Changjiang Uranium Orefield, the northern Guangdong and their significance[J]. Journal of Earth Sciences and Environment, 2015, 37(6):101-110. doi: 10.3969/j.issn.1672-6561.2015.06.009
    [31]
    OSMOND J K, COWART J B. The theory and uses of na-tural uranium isotopic variations in hydrology[J]. Atomic Energy Review, 1976, 14(4):621-679.
    [32]
    IVANOVICH M, HARMON R S. Uranium series disequilibrium:applications to environmental problems[M]. Oxford:Oxford University Press, 1982:23-37.
    [33]
    王玉生, 王新武.粤北铀矿定位场[J].铀矿地质, 2000, 16(6):353-361. doi: 10.3969/j.issn.1000-0658.2000.06.005

    WANG Y S, WANG X W. Localization field of uranium deposits in northern Guangdong[J]. Uranium Geology, 2000, 16(6):353-361. doi: 10.3969/j.issn.1000-0658.2000.06.005
    [34]
    DOSSETO A, BOURDON B, TURNER S P. Uranium-series isotopes in river materials:insights into the timescales of erosion and sediment transport[J]. Earth and Planetary Science Letters, 2008, 265(1/2):1-17. https://www.journals.elsevier.com/earth-and-planetary-science-letters/frontiers-papers-pre-2011/uranium-series-isotopes-in-river-materials-insights
    [35]
    KURTZ A C, DERRY L A, CHADWICK O A. Accretion of Asian dust to Hawaiian soils:isotopic, elemental, and mineral mass balances[J]. Geochimica et Cosmochimica Acta, 2001, 65(12):1971-1983. doi: 10.1016/S0016-7037(01)00575-0
    [36]
    PETT-RIDGE J C, MONASTRA V M, DERRY L A, et al. Importance of atmospheric inputs and Fe-oxides in controlling soil uranium budgets and behavior along a Hawaiian chronosequence[J]. Chemical Geology, 2007, 244(3/4):691-707. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d789eb46f59df2edf07b295e2ce62a95
    [37]
    DIA A, CHAUVEL C, BULOURDE M, et al. Eolian contribution to soils on Mount Cameroon:isotopic and trace element records[J]. Chemical Geology, 2006, 226(3/4):232-252. http://cn.bing.com/academic/profile?id=e1c1102271e9b78dfe2cf679cde7886f&encoded=0&v=paper_preview&mkt=zh-cn
    [38]
    PELT E, CHABAUX F, STILLE P, et al. Atmospheric dust contribution to the budget of U-series nuclides in soils from the Mount Cameroon volcano[J]. Chemical Geo-logy, 2013, 341:147-157. doi: 10.1016/j.chemgeo.2013.01.008
    [39]
    魏志强, 钟巍, 陈永强, 等.亚热带季风区湖沼流域表生地球化学元素研究——以江西定南大湖为例[J].地理科学进展, 2015, 34(7):909-917. http://www.cnki.com.cn/Article/CJFDTotal-DLKJ201507012.htm

    WEI Z Q, ZHONG W, CHEN Y Q, et al. Supergene geochemical elements of swampy basin in the subtropical monsoon region:a case study of Dingnan Dahu in Jiangxi Province[J]. Progress in Geography, 2015, 34(7):909-917. http://www.cnki.com.cn/Article/CJFDTotal-DLKJ201507012.htm
    [40]
    ANDERSSON P S, PORCELLI D, WASSERBURG G J, et al. Particle transport of 234U-238U in the Kalix River and in the Baltic Sea[J]. Geochimica et Cosmochimica Acta, 1998, 62(3):385-392. doi: 10.1016/S0016-7037(97)00342-6
    [41]
    JIN L, RAVELLA R, KETCHUM B, et al. Mineral weathering and elemental transport during hillslope evolution at the Susquehanna/Shale Hills Critical Zone Observatory[J]. Geochimica et Cosmochimica Acta, 2010, 74(13):3669-3691. doi: 10.1016/j.gca.2010.03.036
    [42]
    LIENERT C, SHORT S A, VON GUNTEN H R. Uranium infiltration from a river to shallow groundwater[J]. Geo-chimica et Cosmochimica Acta, 1994, 58(24):5455-5463. doi: 10.1016/0016-7037(94)90242-9
    [43]
    PORCELLI D, ANDERSSON P S, WASSERBURG G J, et al. The importance of colloids and mires for the transport of uranium isotopes through the Kalix River watershed and Baltic Sea[J]. Geochimica et Cosmochimica Acta, 1997, 61(19):4095-4113. doi: 10.1016/S0016-7037(97)00235-4
    [44]
    PLATER A J, IVANOVICH M, DUGDALE R E. Uranium series disequilibrium in river sediments and waters:the significance of anomalous activity ratios[J]. Applied Geochemistry, 1992, 7(2):101-110. http://cn.bing.com/academic/profile?id=91a7aef76e5f5ea4635d3657b25d5892&encoded=0&v=paper_preview&mkt=zh-cn
    [45]
    朱照宇, 谢久兵, 王彦华, 等.华南沿海地表红土地球化学特性变异的自然因素与人类活动干预[J].第四纪研究, 2004, 24(4):402-408. doi: 10.3321/j.issn:1001-7410.2004.04.005

    ZHU Z Y, XIE J B, WANG Y H et al. The natural factors and artificial disturbance of variation in geochemistry characteristics of red soil on land surface along the coast of South China [J]. Quaternary Sciences, 2004, 24(4):402-408. doi: 10.3321/j.issn:1001-7410.2004.04.005
    [46]
    NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299:715-717. doi: 10.1038/299715a0
    [47]
    EYNATTEN H V, BARCELÓ-VIDAL C, PAWLOWSKY-GLAHN V. Modelling compositional change:the example of chemical weathering of granitoid rocks[J]. Mathematical Geology, 2003, 35(3):231-251. http://cn.bing.com/academic/profile?id=926e74ab3dd60b73e9b6a6a3cd60a8b8&encoded=0&v=paper_preview&mkt=zh-cn
    [48]
    MCLENNAN S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2):295-303. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226531170/
    [49]
    NESBITT H W, YOUNG G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2):129-147. doi: 10.1086-629290/
    [50]
    周尚哲, 朱丽东, 李淑珍, 等.南岭夷平面风化壳发育时间问题探讨——以粤北大布镇剖面为例[J].山地学报, 2013, 31(1):1-7. doi: 10.3969/j.issn.1008-2786.2013.01.001

    ZHOU S Z, ZHU L D, LI S Z, et al. Discussion of the weathering crust development time on the Nanling Planation Surface——take the Dabuzhen as an example[J]. Journal of Mountain Science, 2013, 31(1):1-7. doi: 10.3969/j.issn.1008-2786.2013.01.001
    [51]
    杨金玲, 张甘霖, 黄来明.典型亚热带花岗岩地区森林流域岩石风化和土壤形成速率研究[J].土壤学报, 2013, 50(2):253-259. http://d.old.wanfangdata.com.cn/Periodical/trxb201302005

    YANG J L, ZHANG G L, HUANG L M. Rock weathering and soil formation rates of a forested watershed in the typi-cal subtropical granite area[J]. Acta Pedologica Sinica, 2013, 50(2):253-259. http://d.old.wanfangdata.com.cn/Periodical/trxb201302005

Catalog

    Article views (3688) PDF downloads (122) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return