• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
SU Chiquan, RU Qiang, SHI Zhenglu, ZHAO Lingzhi. The Lithium Storage Performance of Biochar-Loaded Metal Selenide Composite Material[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 32-37. DOI: 10.6054/j.jscnun.2019082
Citation: SU Chiquan, RU Qiang, SHI Zhenglu, ZHAO Lingzhi. The Lithium Storage Performance of Biochar-Loaded Metal Selenide Composite Material[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 32-37. DOI: 10.6054/j.jscnun.2019082

The Lithium Storage Performance of Biochar-Loaded Metal Selenide Composite Material

More Information
  • Received Date: January 20, 2018
  • Available Online: March 08, 2021
  • Puffed rice carbon was obtained by carbonizing puffed rice at high temperature. Puffed rice carbon (used as biochar) and commercial Sn and Se powder were used to design SnSe/PRC anodes for lithium ion batteries with a high-energy ball grinding method under inert argon atmosphere with 600 r/m for 48 hours. The structure, morphology and electrochemical property of the materials were characterized with X-ray diffraction, scanning electron microscopy (including energy dispersive spectrometer), galvanostatical cycling tests, cyclic voltammetry and electrochemical impedance spectroscopy. Under the action of high energy mechanical force, puffed rice carbon, Sn and Se powder extruded each other to form an alloy/carbon inlaid structure, which improved the electrical conductivity, buffered the large volume expansion effect and improved the structural stability. When cycled at a current density of 500 mA/g in 0.01~3.00 V, SnSe/PRC presented a high initial discharge capacity of 703.9 mAh/g and retained a stable capacity of 608.9 mAh/g after 50 cycles. It also had a good rate performance. Its capacity remained stable under high current densities. When the initial current density was restored, the capacity returned to the initial level. The research shows that the utilization of this environment-friendly and facile biochar can effectively improve the lithium storage performance of SnSe, which has a good reference value for the application of metal selenide in the lithium ion battery.
  • [1]
    TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414:359-367. doi: 10.1038/35104644
    [2]
    BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2008, 47(16):2930-2946. doi: 10.1002/anie.200702505
    [3]
    李亚杰, 周宇, 侯贤华, 等.多边形结构富锂锰基正极材料的可控制备及性能[J].华南师范大学学报(自然科学版), 2017, 49(6):34-38. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201706007

    LI Y J, ZHOU Y, HOU X H, et al. Controllable preparation and performance of Li-rich Mn-based cathode materials with polygon structure[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(6):34-38. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201706007
    [4]
    GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery:a perspective[J]. Journal of the American Chemical Society, 2013, 135(4):1167-1176. doi: 10.1021/ja3091438
    [5]
    XUE M Z, YAO J, CHENG S C, et al. Lithium electrochemistry of a novel SnSe thin-film anode[J]. Journal of The Electrochemical Society, 2006, 153(2):270-274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b5c8aa2a5384bc210609efe9ae1450ae
    [6]
    WANG X, LIU B, XIANG Q, et al. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices[J]. ChemSusChem, 2014, 7(1):308-313. doi: 10.1002/cssc.201300241
    [7]
    LEE D H, PARK C M. Tin selenides with layered crystal structures for Li-ion batte-ries:interesting phase change mechanisms and outstanding electrochemical behaviors[J]. ACS Applied Materials & Interfaces, 2017, 9(18):15439-15448. https://www.ncbi.nlm.nih.gov/pubmed/28402105
    [8]
    YUAN H, JIN Y, LAN J, et al. In situ synthesized SnSe nanorods in a SnOx@CNF membrane toward high-performance freestanding and binder-free lithium-ion batteries[J]. Inorganic Chemistry Frontiers, 2018, 5(4):932-938. doi: 10.1039/C7QI00762K
    [9]
    CHEN K, WANG X, WANG G, et al. A new generation of high performance anode materials with semiconductor heterojunction structure of SnSe/SnO2@Gr in lithium-ion batteries[J]. Chemical Engineering Journal, 2018, 347:552-562. doi: 10.1016/j.cej.2018.04.125
    [10]
    ZHANG L, LU L, ZHANG D, et al. Dual-buffered SnSe@ CNFs as negative electrode with outstanding lithium storage performance[J]. Electrochimica Acta, 2016, 209:423-429. doi: 10.1016/j.electacta.2016.05.106
    [11]
    WANG D, ZHANG K, ZHU Y, et al. A novel strategy to prepare graphene oxide-wrapped nanocrystals composite for high-performance lithium storage[J]. Materials Letters, 2016, 175:32-35. doi: 10.1016/j.matlet.2016.03.135
    [12]
    ZHANG Z, ZHAO X, LI J. SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries[J]. Electrochimica Acta, 2015, 176:1296-1301. doi: 10.1016/j.electacta.2015.07.140
    [13]
    YOON Y H, KIM D S, KIM M J, et al. Investigation of electrochemical performance on carbon supported tin-selenium bimetallic anodes in lithium-ion batteries[J]. Electrochimica Acta, 2018, 266:193-201. doi: 10.1016/j.electacta.2017.12.188
    [14]
    GURUNG A, NADERI R, VAAGENSMITH B, et al. Tin selenide-multi-walled carbon nanotubes hybrid anodes for high performance lithium-ion batteries[J]. Electrochimica Acta, 2016, 211:720-725. doi: 10.1016/j.electacta.2016.06.065
    [15]
    倪江锋, 周恒辉, 陈继涛, 等.锂离子电池中固体电解质界面膜(SEI)研究进展[J].化学进展, 2004, 16(3):335-342. doi: 10.3321/j.issn:1005-281X.2004.03.003

    JIANGFENG N, HENGHUI Z, JITAO C, et al. Progress in solid electrolyte interface in lithium ion batteries[J]. Progress in Chemistry, 2004, 16(3):335-342. doi: 10.3321/j.issn:1005-281X.2004.03.003
    [16]
    KWON H T, PARK C M. Electrochemical characteristics of ZnSe and its nanostructured composite for rechargeable Li-ion batteries[J]. Journal of Power Sources, 2014, 251:319-324. doi: 10.1016/j.jpowsour.2013.11.033
    [17]
    NARAYANAN S R, SHEN D H, SURAMPUDI S, et al. Electrochemical impedance spectroscopy of lithium-titanium disulfide rechargeable cells[J]. Journal of the Electrochemical Society, 1993, 140(7):1854-1861. doi: 10.1149/1.2220729
    [18]
    陈晓秋, 汝强, 王朕, 等.高容量钠离子电池SnSbCo/rGO负极材料[J].华南师范大学学报(自然科学版), 2018, 50(2):34-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201802007

    CHEN X Q, RU Q, WANG Z, et al. SnSbCo/rGO anodes of high capacity sodium ion batteries[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(2):34-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201802007

Catalog

    Article views (2084) PDF downloads (46) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return