Citation: | ZHONG Jianhua, ZENG Zhihong, CHEN yanqing, CHEN Qiang. The Equivalent Conditions for a Second Kind of Hardy-Type Inequality Related to Gamma Function[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 101-105. DOI: 10.6054/j.jscnun.2020050 |
[1] |
HARDY G H, LITTLEWOOD J E, POLYE G.Inequalities[M].Cambridge:Cambridge University Press, 1952.
|
[2] |
HARDY G H.Note on a theorem of Hilbert concerning series of positive terms[J].Proceedings of the London Mathematical Society, 1925, 23(2):45-46. https://www.researchgate.net/publication/246978813_Note_on_a_theorem_of_Hilbert_concerning_series_of_positive_term
|
[3] |
钟建华.一个核为零齐次的Hilbert级数型不等式及其逆[J].华南师范大学学报(自然科学版), 2011, 43(2):33-37. http://journal-n.scnu.edu.cn/article/id/502
ZHONG J H.A Hilbert-type series-inequality and its reverses with the homogeneous kernels of zero degree[J].Journal of South China Normal University (Natural Science Edition), 2011, 43(2):33-37. http://journal-n.scnu.edu.cn/article/id/502
|
[4] |
钟建华, 陈强.一个核为递减零齐次半离散的Hilbert型不等式[J].浙江大学学报(理学版), 2015, 42(1):77-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb201501011
ZHONG J H, CHEN Q.A half-discrete Hilbert-type inequality with the decreasing and homogeneous kernel of degree 0[J].Journal of Zhejiang University (Science Edition), 2015, 42(1):77-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb201501011
|
[5] |
曾志红, 杨必成.关于一个参量化的全平面Hilbert不等式[J].华南师范大学学报(自然科学版), 2017, 49(5):100-103. http://journal-n.scnu.edu.cn/article/id/4193
ZENG Z H, YANG B C.A parametric Hilbert's integral inequality in the whore plane[J].Journal of South China Normal University (Natural Science Edition), 2017, 49(5):100-103. http://journal-n.scnu.edu.cn/article/id/4193
|
[6] |
钟建华, 陈强, 曾志红.一个非单调非齐次核的Hilbert型积分不等式[J].浙江大学学报(理学版), 2017, 44(2):150-153. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb201702005
ZHONG J H, CHEN Q, ZENG Z H.A Hilbert-type integral inequality with a non-monotone and non-homogeneous kernel[J].Journal of Zhejiang University (Science Edition), 2017, 44(2):150-153. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb201702005
|
[7] |
杨必成.一个半离散一般齐次核Hilbert型不等式的等价陈述[J].广东第二师范学院学报, 2019, 39(3):5-13. http://d.old.wanfangdata.com.cn/Periodical/gdjyxyxb201903002
YANG B C.Equivalent statements of a half-discrete Hilbert-type inequality with the general homogeneous kernel[J].Journal of Guangdong University of Education, 2019, 39(3):5-13. http://d.old.wanfangdata.com.cn/Periodical/gdjyxyxb201903002
|
[8] |
洪勇, 曾志红.齐次核的Hilbert型级数不等式成立的充要条件及其在算子理论中的应用[J].西南大学学报(自然科学版), 2019, 41(12):61-68. http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201912009
HONG Y, ZENG Z H.The necessary and sufficient condition for Hilbert-type series inequality with a homogeneous kernel to hold and its applications in the operator theory[J].Journal of South-West University (Natural Science Edition), 2019, 41(12):61-68. http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201912009
|
[9] |
杨必成.算子范数与Hilbert型不等式[M].北京:科学出版社, 2009.
|
[10] |
YANG B C.Hilbert-type integral inequalities[M].London:Bentham Science Publishers Ltd, 2009.
|
[11] |
杨必成.论Hilbert型积分不等式及其算子表示[J].广东第二师范学院学报, 2013, 33(5):1-17. http://d.old.wanfangdata.com.cn/Periodical/gdjyxyxb201305001
YANG B C.On Hilbert-type integral inequalities and their operator expressions[J].Journal of Guangdong University of Education, 2013, 33(5):1-17. http://d.old.wanfangdata.com.cn/Periodical/gdjyxyxb201305001
|
[12] |
王竹溪, 郭敦仁.特殊函数概论[M].北京:科学出版社, 1979.
|
[13] |
匡继昌.实分析与泛函分析续论(下册)[M].北京:高等教育出版社, 2015.
|
[14] |
匡继昌.常用不等式[M].济南:山东科学技术出版社, 2004.
|
[15] |
钟玉泉.复变函数论[M].北京:高等教育出版社, 2003.
|
1. |
周伟,丁雪莹,谢志强. 考虑柔性设备加工能力的综合调度算法. 华南师范大学学报(自然科学版). 2024(02): 110-118 .
![]() | |
2. |
胡欣,沈伟,李伟,王兴龙,陈逸君. 基于改进边缘算法的通信光缆设备智能检测技术研究. 粘接. 2024(10): 140-144 .
![]() |