• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHOU Buyun, AI Baoquan. The Effect of Rough Potential Energy on the Thermal Conductivity of Frenkel-Kontorova Lattice[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 19-23. DOI: 10.6054/j.jscnun.2020022
Citation: ZHOU Buyun, AI Baoquan. The Effect of Rough Potential Energy on the Thermal Conductivity of Frenkel-Kontorova Lattice[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 19-23. DOI: 10.6054/j.jscnun.2020022

The Effect of Rough Potential Energy on the Thermal Conductivity of Frenkel-Kontorova Lattice

More Information
  • Received Date: December 30, 2019
  • Available Online: March 21, 2021
  • The effects of the height and frequency of rough potential energy on the negative differential thermal resistance and thermal conductivity of Frenkel-Kontorova lattice were studied through computer simulation using the nonlinear molecular dynamics method. The results are as follows. First, the height and frequency of the rough potential reduce the appearance range of negative differential thermal resistance (NDTR). Second, the thermal conductivity is a function of the height and frequency of the rough potential energy, and there exists an optimal height of the rough potential energy where the thermal conductivity reaches the maximum value. And third, the thermal conductivity decreases monotonically with the increase of the rough potential energy frequency. The research results reveal the effect of rough potential energy on heat conduction and can be reference for the study of the nonlinear response mechanism of low-dimensional materials and the application of heat flow controllers.
  • [1]
    AI B Q, HU B. Heat conduction in deformable Frenkel-Kontorova lattices:thermal conductivity and negative differential thermal resistance[J]. Physical Review E, 2011, 83(1):011131/1-7. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1102.0109
    [2]
    HU B, LI B, ZHAO H. Heat conduction in one-dimensional nonintegrable systems[J]. Physical Review E, 2000, 61(4):3828-3831. doi: 10.1103/PhysRevE.61.3828
    [3]
    RIEDER Z, LEBOWITZ J L, LIEB E. Properties of a harmonic crystal in a stationary nonequilibrium state[J]. Journal of Mathematical Physics, 1967, 8(5):1073-1078. doi: 10.1063/1.1705319
    [4]
    HU B, LI B, ZHAO H. Heat conduction in one-dimensional chains[J]. Physical Review E, 1998, 57(3):2992-2995. doi: 10.1103/PhysRevE.57.2992
    [5]
    HU B, YANG L. Heat conduction in the Frenkel-Kontorova model[J]. Chaos, 2005, 15(1):015119/1-9. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0511229
    [6]
    ALONSO D, ARTUSO R, CASATI G, et al. Heat conductivity and dynamical instability[J]. Physical Review Letters, 1999, 82(9):1859-1862. doi: 10.1103/PhysRevLett.82.1859
    [7]
    LEPRI S, LIVI R, POLITI A. Heat conduction in chains of nonlinear oscillators[J]. Physical Review Letters, 1997, 78(10):1896-1899. doi: 10.1103/PhysRevLett.78.1896
    [8]
    NICOLIN L, SEGAL D. Thermal conductance of the Fermi-Pasta-Ulam chains:atomic to mesoscopic transition[J]. Physical Review E, 2010, 81(4):040102/1-4. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0911.1371
    [9]
    HATANO T. Heat conduction in the diatomic Toda lattice revisited[J]. Physical Review E, 1999, 59(1):R1-R4. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f9811396
    [10]
    HU B, YANG L, ZHZNG Y. Asymmetric heat conduction in nonlinear lattices[J]. Physical Review Letters, 2006, 97(12):124302/1-4. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1107.3306
    [11]
    TERRANEO M, PEYRARD M, CASATI G. Controlling the energy flow in nonlinear lattices:a Model for a Thermal Rectifier[J]. Physical Review Letters, 2002, 88(9):094302/1-4. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0201125
    [12]
    GUIMARAES P H G, LANDI T, OLIVEIRA M J. Thermal rectification in anharmonic chains under an energy-conserving noise[J]. Physical Review E, 2015, 92(6):062120/1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cc189d84c6691ec12986e814362c449f
    [13]
    CARTOIXA X, COLOMBO L, RURALI R. Thermal rectification by design in telescopic Si nanowires[J]. Nano Letters, 2015, 15:8255-8259. doi: 10.1021/acs.nanolett.5b03781
    [14]
    LI B, WANG L, CASATI G. Thermal diode:rectification of heat flux[J]. Physical Review Letters, 2004, 93(18):184301/1-4. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_1efd376e6d917f9ff16edfac5e12770e
    [15]
    LI B, WANG L, CASATI G. Negative differential thermal resistance and thermal transistor[J]. Applied Physics Letters, 2006, 88(14):143501/1-3. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212081954/
    [16]
    WANG L, LI B. Thermal logic gates:computation with phonons[J]. Physical Review Letters, 2007, 99(17):177208/1-4. http://cn.bing.com/academic/profile?id=21026e342da5155b47bc210b3afd3714&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    HAN T, BAI X, GAO D, et al. Experimental demonstration of a bilayer thermal cloak[J]. Physical Review Letters, 2014, 112(5):054302/1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=76f0d2f2cfd0a58d068f7520d507918d
    [18]
    XU H, SHI X, GAO F, et al. Ultrathin three-dimensional thermal cloak[J]. Physical Review Letters, 2014, 112(5):054301/1-5. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232196547/
    [19]
    WANG L, LI B. Thermal memory:a storage of phononic information[J]. Physical Review Letters, 2008, 101(26):267203/1-4. doi: 10.1103-PhysRevLett.101.267203/
    [20]
    SEGAL D, NITZAN A. Molecular heat pump[J]. Physical Review E, 2006, 73(2):026109/1-9. http://cn.bing.com/academic/profile?id=65111f99de11163228563c95d24e8045&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    MARATHE R, JAYANNAVAR A M, DHAR A. Two simple models of classical heat pumps[J]. Physical Review E, 2007, 75(3):030103/1-4. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0611771
    [22]
    WU J, WANG L, LI B. Heat current limiter and constant heat current source[J]. Physical Review E, 2012, 85(6):061112/1-4. http://cn.bing.com/academic/profile?id=25e6cee8192d21918dd4987b990c91d4&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    SHAO Z G, YANG L, ZHONG W R, et al. Scaling and the thermal conductivity of the Frenkel-Kontorova model[J]. Physical Review E, 2008, 78(6):061130/1-6. doi: 10.1103-PhysRevE.78.061130/
    [24]
    OU Y L, LU S C, HU C T, et al. Bidirectional negative differential thermal resistance in three-segment Frenkel-Kontorova lattices[J]. Journal of Physics:Condensed Matter, 2016, 28:495301/1-6. http://cn.bing.com/academic/profile?id=c7e51bbfe4f109792df3b9dd2892f105&encoded=0&v=paper_preview&mkt=zh-cn
    [25]
    AI B Q, ZHONG W R, HU B. Dimension dependence of negative differential thermal resistance in graphene nano-ribbons[J]. The Journal of Physical Chemistry C, 2012, 116:13810-13815. https://www.sciencedirect.com/science/article/pii/S0008622316300458

Catalog

    Article views (1576) PDF downloads (44) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return