加权壳近邻填充数学模型
Weighted Shell-Neighbor Imputation Methods
-
摘要: 提出加权壳近邻填充缺失数据数学模型,充分利用壳近邻填充选取近邻数据的特性,侧重于被重复选择到的近邻点,有效提高了填充效果. 还提出一种称为goodness的新评价方法,克服了均方根误差(RMSE)的弱点. 实验结果表明,提出的加权壳近邻填充数学模型比一般的近邻填充的效果好,而且goodness评价方法比RMSE更能分辨出填充算法的性能.Abstract: Weighted methods are designed for improving Shell Neighbor Imputation, Called WSNI. They utilize the features of nearest neighbor selection of the WSNI. All multiple-selected nearest neighbors are stressed in the WSNI algorithms. This lads to pretty good performance.Experimental results show that the porposed algorithms have better performances than conventional neighbor imputation method.