Understanding the Stereoselective Mechanism of Diniconazole Enantiomers Interacting with Serum Albumins
-
摘要: 手性药物与血清蛋白的结合通常表现出立体选择性。采用UV-Vis吸收光谱、荧光光谱和分子对接技术研究了R-烯唑醇和S-烯唑醇与人血清蛋白(HSA)/牛血清蛋白(BSA)的结合差异。结果表明:血清蛋白与R-烯唑醇的结合能力强于S-烯唑醇;烯唑醇对血清蛋白的荧光猝灭机制为静态猝灭;R-烯唑醇和S-烯唑醇与HSA相互作用的总能量分别为-26.4 kJ/mol和-23.6 kJ/mol,与BSA的对接能量分别为-27.6 kJ/mol和-23.3 kJ/mol,说明R-烯唑醇与血清蛋白形成的复合物更稳定。研究结果可为后续开展烯唑醇的立体选择性作用机制研究提供依据。Abstract: Interactions of chiral pharmaceuticals and serum albumins show enantioselectivity. Herein, UV-Vis absorption spectroscopy, fluorescent spectroscopy, and molecular docking technology were applied in investigation of enantioselective interactions between diniconazole enantiomers and bovine/human serum albumins (BSA/HSA). The results showed that serum albumins possessed stronger binding affinity for R-diniconazole than S-diniconazole; fluorescent quenching of serum albumins induced by diniconazole enantiomers was ascribed to static quenching mechanism; the docking energies between R-diniconazole and S-diniconazole with HSA were -26.4 kJ/mol and -23.6 kJ/mol, and the docking energies with BSA were -27.6 kJ/mol and -23.3 kJ/mol, respectively, which indicates that binding of serum albumin with R-diniconazole was more stable than that with S-enantiomer. Therefore, this study would provide useful information for the stereoselective mechanism of diniconazole in biological system.
-
-
表 1 不同温度下HSA和BSA与烯唑醇对映体的结合常数(Ka)、结合位点数(n)和热力学参数
Table 1 The binding constant (Ka), number of binding sites (n) and relative thermodynamic parameters of HSA and BSA with diniconazole enantiomers at different temperatures
作用体系 T/K Stern-Volmer方程 双对数方程 范特霍夫方程 KSV/
(L·mol-1)kq/
(L·mol-1·s-1)R2 Ka/
(L·mol-1)n R2 ΔH/
(kJ·mol-1)ΔG/
(kJ·mol-1)ΔS/
(J·mol-1·K-1)R2 HSA与R-烯唑醇 293 0.95×105 0.95×1013 0.945 7 74.31×105 1.60 0.994 8 -91.4 -13.5 -265.90 0.996 4 303 1.31×105 1.31×1013 0.993 2 3.51×105 1.21 0.997 5 -9.8 -269.44 313 1.62×105 1.62×1013 0.988 9 0.30×105 1.07 0.965 5 -1.2 -254.86 HSA与S-烯唑醇 293 0.93×105 0.93×1013 0.952 3 22.08×105 1.56 0.991 2 -94.0 -15.5 -268.23 0.987 7 303 1.16×105 1.16×1013 0.991 1 0.81×105 1.21 0.998 1 -17.3 -253.25 313 1.29×105 1.29×1013 0.989 6 0.08×105 0.95 0.979 5 -12.8 -259.69 BSA与R-烯唑醇 293 0.97×105 0.97×1013 0.946 8 79.78×105 1.66 0.994 9 -74.9 -13.6 -209.03 0.982 9 303 1.32×105 1.32×1013 0.993 6 4.01×105 1.26 0.999 2 -11.1 -210.60 313 1.64×105 1.64×1013 0.991 1 0.53×105 1.12 0.983 4 -12.3 -199.98 BSA与S-烯唑醇 293 0.93×105 0.93×1013 0.950 9 22.96×105 1.56 0.993 3 -74.9 -15.5 -202.72 0.989 6 303 1.17×105 1.17×1013 0.989 7 1.68×105 1.21 0.998 1 -17.4 -189.79 313 1.33×105 1.33×1013 0.988 3 0.25×105 1.07 0.993 6 -13.6 -195.84 表 2 HSA-烯唑醇和BSA-烯唑醇复合物的分子对接参数
Table 2 The molecular docking parameters for binding between HSA- and BSA-diniconazole complexes
作用体系 疏水相互作用 氢键 π-阳离子相互作用 对接能量/
(kJ·mol-1)残基 距离/nm 残基 距离/nm 残基 距离/nm HSA与R-烯唑醇 ARG117 0.342 ARG117 0.252 ARG117 0.441 -26.4 ILE142 0.365 ARG117 0.232 TYR161 0.349 LEU182 0.201 — — ARG186 0.322 HSA与S-烯唑醇 ILE142 0.334 TYR161 0.219 — — -23.6 PHE157 0.381 LEU185 0.195 ARG186 0.384 GLY189 0.337 ARG186 0.397 — — BSA与R-烯唑醇 LEU454 0.324 THR190 0.194 ARG458 0.454 -27.6 TYR451 0.326 SER428 0.217 ILE455 0.336 TYR451 0.303 TYR451 0.338 — — GLU186 0.344 — — BSA与S-烯唑醇 LYS431 0.344 GLU186 0.198 — — -23.3 TYR451 0.309 LEU189 0.202 ILE455 0.349 THR190 0.295 ILE455 0.378 — — -
[1] de CAMP W H. The FDA perspective on the development of stereoisomers[J]. Chirality, 1989, 1(1): 2-6. doi: 10.1002/chir.530010103
[2] JAFARI M, TASHKHOURIAN J, ABSALAN G. Chiral recognition of naproxen enantiomers based on fluorescence quenching of bovine serum albumin-stabilized gold nanoclusters[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 185: 77-84. doi: 10.1016/j.saa.2017.05.029
[3] MUSZKAT M, BLOTNIK S, ELAMI A, et al. Warfarin metabolism and anticoagulant effect: a prospective, observational study of the impact of CYP2C9 genetic polymorphism in the presence of drug-disease and drug-drug interactions[J]. Clinical Therapeutics, 2007, 29(3): 427-437. doi: 10.1016/S0149-2918(07)80081-6
[4] 刘里, 成飞翔. 光谱法研究泮托拉唑钠与牛血清白蛋白的相互作用[J]. 华南师范大学学报(自然科学版), 2017, 49(1): 74-79. http://journal-n.scnu.edu.cn/article/id/3756 LIU L, CHENG F X. Study on the interaction between pantoprazole sodium and bovine serum albumin by spectrometry[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(1): 74-79. http://journal-n.scnu.edu.cn/article/id/3756
[5] 张大维, 宋宁, 刘语, 等. 光谱-分子模拟法分析杨梅素与人血清白蛋白的分子作用机制[J]. 分析试验室, 2021, 40(3): 351-356. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202103020.htm ZHANG D W, SONG N, LIU Y, et al. Analysis on molecular interaction mechanism of myricetin binding with human serum albumin by spectroscopy and molecular modeling method[J]. Chinese Journal of Analysis Laboratory, 2021, 40(3): 351-356. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202103020.htm
[6] 李红, 许茜, 郑晓丽, 等. 人参皂苷Rh2与血清白蛋白相互作用立体选择性的光谱及分子对接研究[J]. 光谱学与光谱分析, 2018, 38(12): 3839-3845. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201812035.htm LI H, XU Q, ZHENG X L, et al. Study of stereoselective interaction between ginsenoside Rh2 and serum albumin by spectroscopic methods and molecular docking[J]. Spectroscopy and Spectral Analysis, 2018, 38(12): 3839-3845. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201812035.htm
[7] MU H T, CHEN S H, LIU F Y, et al. Stereoselective interactions of lactic acid enantiomers with HSA: spectroscopy and docking application[J]. Food Chemistry, 2019, 270: 429-435. doi: 10.1016/j.foodchem.2018.07.135
[8] LIU C, GUO J, CUI F. Study on the stereoselective binding of cytosine nucleoside enantiomers to human serum albumin[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 224: 117452/1-8.
[9] FANG Z L, SU W C, ZHANG W G, et al. Chiral discrimination and interaction mechanism between enantiomers and serum albumins[J]. Journal of Molecular Recognition, 2013, 26(4): 161-164. doi: 10.1002/jmr.2247
[10] TAKANO H, OGURI Y, KATO T. Antifungal and plant growth regulating activities of enantiomers of (E)-1-(2, 4-dichlorophenyl)-4, 4-dimethyl-2-(1, 2, 4-triazol-1-yl)-1-penten-3-ol (S-3308L)[J]. Journal of Pesticide Science, 1986, 11(3): 373-378. doi: 10.1584/jpestics.11.373
[11] ZHANG X Z, ZHAO Y C, CUI X Y, et al. Application and enantiomeric residue determination of diniconazole in tea and grape and apple by supercritical fluid chromatography coupled with quadrupole-time-of-flight mass spectrometry[J]. Journal of Chromatography A, 2018, 1581/1582: 144-155. doi: 10.1016/j.chroma.2018.10.051
[12] WANG H L, CHEN J H, GUO B Y, et al. Enantioseletive bioaccumulation and metabolization of diniconazole in earthworms (Eiseniafetida) in an artificial soil[J]. Ecotoxicology and Environmental Safety, 2014, 99: 98-104. doi: 10.1016/j.ecoenv.2013.10.017
[13] LIU C, LÜ X T, ZHU W X, et al. Enantioselective bioaccumulation of diniconazole in tenebrio molitor larvae[J]. Chirality, 2013, 25(12): 917-922. doi: 10.1002/chir.22234
[14] WANG Q X, QIU J, ZHOU Z Q, et al. Stereoselective pharmacokinetics of diniconazole enantiomers in rabbits[J]. Chirality, 2009, 21(7): 699-703. doi: 10.1002/chir.20667
[15] SU W C, ZHANG W G, ZHANG S, et al. A novel strategy for rapid real-time chiral discrimination of enantiomers using serum albumin functionalized QCM biosensor[J]. Biosensors and Bioelectronics, 2009, 25(2): 488-492. doi: 10.1016/j.bios.2009.06.040
[16] SIMARD J R, ZUNSZAIN P A, HAMILTON J A, et al. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis[J]. Journal of Molecular Biology, 2006, 361(2): 336-351. doi: 10.1016/j.jmb.2006.06.028
[17] LIU T T, LIU M, GUO Q Y, et al. Investigation of binary and ternary systems of human serum albumin with oxyresveratrol/piceatannol and/or mitoxantrone by multipectroscopy, molecular docking and cytotoxicity evaluation[J]. Journal of Molecular Liquids, 2020, 311: 113364/1-12.
[18] TONG J Q, TIAN F F, LIU Y, et al. Comprehensive study of the adsorption of an acylhydrazone derivative by serum albumin: unclassical static quenching[J]. RSC Advances, 2014, 4: 59686-59696. doi: 10.1039/C4RA09107H
[19] HAZRA S, KUMAR G S. Structural and thermodynamic studies on the interaction of iminium and alkanolamine forms of sanguinarine with hemoglobin[J]. The Journal of Physical Chemistry B, 2014, 118(14): 3771-3784. doi: 10.1021/jp409764z
[20] JAYABHARATHI J, THANIKACHALAM V, SATHISHKUMAR R, et al. Fluorescence investigation of the interaction of 2-(4-fluorophenyl)-1-phenyl-1H-phenanthro[9, 10-d] imidazole with bovine serum albumin[J]. Journal of Photochemistry and Photobiology B: Biology, 2012, 117: 222-227. doi: 10.1016/j.jphotobiol.2012.10.005
[21] LIU J M, YAN X Y, YUE Y Y, et al. Investigation of the interaction of aurantio-obtusin with human serum albumin by spectroscopic and molecular docking methods[J]. Luminescence, 2018, 33(1): 104-111. doi: 10.1002/bio.3378
-
期刊类型引用(0)
其他类型引用(9)