The Existence of Positive Solutions to A Third-order Three-point Boundary Value Problem with Sign-changing Green's Function
-
摘要: 应用格林函数的性质和迭代法, 研究了一类具有变号格林函数的三阶三点边值问题 {u‴(t)=f(t,u(t))(t∈[0,1]),u(1)=0,u′(0)=u″(0),αu″(η)+βu(0)=0 正解的存在性, 其中, f∈C([0, 1]×[0, ∞), [0, ∞)), α∈[0, 1],
27 α < β <23 α, η∈[23 , 1). 得到了该边值问题正解存在性的条件.Abstract: Using the properties of Green's function and the iterative method, the existence of positive solutions to a class of third-order three-point boundary value problems with sign-changing Green's function is studied: {u‴(t)=f(t,u(t))(t∈[0,1]),u(1)=0,u′(0)=u″(0),αu″(η)+βu(0)=0, where f∈C([0, 1]×[0, ∞), [0, ∞)), α∈[0, 1],27 α < β <23 α, η∈[23 , 1). The conditions for the existence of positive solutions to the boundary value problem are obtained. -
三阶常微分方程边值问题由于在工程、物理和流体力学等领域的显著应用而受到广泛关注. 学者们运用单调迭代法、上下解方法、Guo-Krasnosel'skii不动点定理和Leray-Schauder非线性抉择等, 研究了三阶三点边值问题在格林函数非负的情况下的单个或多个正解的存在性[1-7]. 近年来, 学者们在格林函数变号的情况下也得到了很多结果[8-17]. 如: LI等[9]使用Guo-Krasnosel'skii不动点定理讨论了变号格林函数的三阶三点边值问题
{u′′′(t)=f(t,u(t))(t∈[0,1]),u(1)=u′(0)=0,u′′(η)+αu(0)=0 正解的存在性, 其中, α ∈[0, 2), η ∈[√121+24α−53(4+α),1).
GAO和SUN[10]运用Avery-Henderson不动点定理, 在格林函数变号时讨论了问题
{u′′′(t)=f(t,u(t))(t∈[0,1]),u(1)=u′(0)=0,u′′(η)−αu′(1)=0 正解的存在性, 其中, α ∈[0, 2), η ∈[4+α24−3α,1).
ZHAO和LI[11]运用迭代法讨论了变号格林函数的三阶三点边值问题
{u′′′(t)=f(t,u(t))(t∈[0,1]),u(1)=u′(0)=0,u′′(η)+αu(0)=0 正解的存在性, 其中, α∈[0, 2), η∈[2/3, 1).
受文献[11]的启发, 本文将运用迭代法, 研究如下具有变号格林函数的三阶三点边值问题
{u′′′(t)=f(t,u(t))(t∈[0,1]),u(1)=0,u′(0)=u′′(0),αu′′(η)+βu(0)=0 (1) 正解的存在性, 其中, α ∈[0, 1], 27α < β < 23α, η ∈[2/3, 1). 在本文中, 总是假设f∈C([0, 1]×[0, ∞), [0, ∞)), 且f满足下列2个条件:
(H1) 对于每一个u∈[0, +∞), 映射t↦f(t, u)是递减的;
(H2) 对于每一个t∈[0, 1], 映射u↦f(t, u)是递增的.
1. 预备知识
本文所用到的空间是C[0, 1], 记E=C[0, 1], ‖u‖=maxt∈[0,1]|u(t)|.
引理1 对任意的y ∈C[0, 1], 边值问题
{u′′′(t)=y(s)(t∈[0,1]),u(1)=0,u′(0)=u′′(0),αu′′(η)+βu(0)=0 (2) 有唯一解
u(t)=∫10G(t,s)f(s,u(s))ds, 其中:
G(t,s)=g1(t,s)+g2(t,s)+g3(η,t,s);g1(t,s)=β(t+t2/2)−α2α−3β(1−s)2;g2(t,s)={0(0⩽ 证明 对u'''(t)=y(t)在[0, t]上两边积分, 得
\begin{array}{c} u^{\prime \prime}(t)=u^{\prime \prime}(0)-\int_{0}^{t} y(s) \mathrm{d} s ,\\ u^{\prime}(t)=u^{\prime}(0)+u^{\prime \prime}(0) t-\int_{0}^{t}(t-s) y(s) \mathrm{d} s ,\\ u(t)=u(0)+u^{\prime}(0) t+\frac{1}{2} u^{\prime \prime}(t) t^{2}+\frac{1}{2} \int_{0}^{t}(t-s)^{2} y(s) \mathrm{d} s, \end{array} 由边界条件可得
\begin{array}{c} u(0)+\frac{3}{2} u^{\prime}(0)+\frac{1}{2} \int_{0}^{1}(1-s)^{2} y(s) \mathrm{d} s=0,\\ \alpha u^{\prime}(0)+\alpha \int_{0}^{\eta} y(s) \mathrm{d} s+\beta u(0)=0. \end{array} 从而有
\begin{array}{l} u(0)=\frac{3 \alpha}{2 \alpha-3 \beta} \int_{0}^{\eta} y(s) \mathrm{d} s-\frac{\alpha}{2 \alpha-3 \beta} \int_{0}^{1}(1-s)^{2} y(s) \mathrm{d} s ,\\ u^{\prime}(0)=\frac{\beta}{2 \alpha-3 \beta} \int_{0}^{1}(1-s)^{2} y(s) \mathrm{d} s-\frac{2 \alpha}{2 \alpha-3 \beta} \int_{0}^{\eta} y(s) \mathrm{d} s. \end{array} 故边值问题(2)的解为
\begin{aligned} u(t)=& \frac{3 \alpha-2 \alpha\left(t+t^{2} / 2\right)}{2 \alpha-3 \beta} \int_{0}^{\eta} y(s) \mathrm{d} s+\\ & \frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta} \int_{0}^{1}(1-s)^{2} y(s) \mathrm{d} s+\\ & \frac{1}{2} \int_{0}^{t}(t-s)^{2} y(s) \mathrm{d} s. \end{aligned} 证毕.
引理2 G(t, s)具有如下性质:
(1) 当0≤s≤η时, G(t, s)≥0;
(2) 当0≤η≤s时, G(t, s)≤0.
证明 当0≤s≤η时, 有
\begin{array}{l} G(t, s)= \\ \left\{\begin{array}{l} \frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}+\frac{3 \alpha-2 \alpha\left(t+t^{2} / 2\right)}{2 \alpha-3 \beta} \quad(0 \leqslant t \leqslant s \leqslant 1), \\ \frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}+\frac{3 \alpha-2 \alpha\left(t+t^{2} / 2\right)}{2 \alpha-3 \beta}+\frac{1}{2}(t-s)^{2} \\ \quad(0 \leqslant s \leqslant t \leqslant 1) . \end{array}\right. \end{array} 分以下2种情况讨论:
(1) 当0≤t≤s≤1时, 有
\begin{array}{c} G_{t}(t, s)=\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}= \\ \frac{(1+t)\left[\beta(1-s)^{2}-2 \alpha\right]}{2 \alpha-3 \beta}<0; \end{array} (2) 当0≤s≤t≤1时, 有
\begin{array}{l} G_{t}(t, s)=\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}+(t-s)= \\ \ \ \ \ \frac{(\beta-\alpha)+\left(\beta s^{2}-\alpha\right)+\beta t\left(s^{2}-2\right)+s(\beta-2 \alpha)-2 \beta t s}{2 \alpha-3 \beta}<0. \end{array} 综上可知, G(t, s)关于变量t单调递减. 从而有
\begin{array}{c} \min \{G(t, s), t \in[0,1]\}=G(1, s)=0, \\ \max \{G(t, s), t \in[0,1]\}=G(0, s)=\frac{3 \alpha-\alpha(1-s)^{2}}{2 \alpha-3 \beta}>0 . \end{array} 故当0≤s≤η时, G(t, s)≥0.
同理可证得: 当0≤η≤s时, G(t, s)关于变量t单调递增. 则有
\begin{array}{c} \max \{G(t, s), t \in[0,1]\}=G(1, s)=0,\\ \min \{G(t, s), t \in[0,1]\}=G(0, s)=-\frac{\alpha(1-s)}{2 \alpha-3 \beta}<0 . \end{array} 从而G(t, s)≤0. 证毕.
设M=max{|G(t, s)| |t, s ∈[0, 1]}, 则
M=\max \left\{\frac{3 \alpha-\alpha(1-s)^{2}}{2 \alpha-3 \beta}, \frac{\alpha(1-s)}{2 \alpha-3 \beta}\right\}<\frac{3 \alpha}{2 \alpha-3 \beta}. 设K={y∈E|y(t)在[0, 1]上非负且递减}, 则K是E中的一个锥, 且在E中定义一个序关系“≤”, u≤ν当且仅当ν-u∈K.
定义算子T: K→E
(T u)(t)=\int_{0}^{1} G(t, s) f(s, u(s)) \mathrm{d} s \quad(u \in K, t \in[0,1]). 显然, 若u是T中的不动点, 则u是边值问题(1)的递减非负解.
引理3 算子T: K→K是全连续的.
证明 设u∈K, 当t∈[0, η]时, 有
\begin{array}{l} (T u)(t)=\int_{0}^{t}\left[\frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}+\right. \\ \ \ \ \ \ \ \ \ \left.\frac{3 \alpha-2 \alpha\left(t+t^{2} / 2\right)}{2 \alpha-3 \beta}+\frac{1}{2}(t-s)^{2}\right] f(s, u(s)) \mathrm{d} s+ \\ \ \ \ \ \ \ \ \ \int_{t}^{\eta}\left[\frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}+\frac{3 \alpha-2 \alpha\left(t+t^{2} / 2\right)}{2 \alpha-3 \beta}\right] \times \\ \ \ \ \ \ \ \ \ f(s, u(s)) \mathrm{d} s+\int_{\eta}^{1}\left[\frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}\right] \times \\ \ \ \ \ \ \ \ \ f(s, u(s)) \mathrm{d} s . \end{array} 由条件(H1)、(H2), 可得
\begin{array}{l} (T u)^{\prime}(t)= \\ \ \ \ \ \int_{0}^{t}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}+(t-s)\right] f(s, u(s)) \mathrm{d} s+ \\ \ \ \ \ \int_{t}^{\eta}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}\right] f(s, u(s)) \mathrm{d} s+ \\ \ \ \ \ \int_{\eta}^{1}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}\right] f(s, u(s)) \mathrm{d} s \leqslant \\ \ \ \ \ f(\eta, u(\eta))\left\{\int_{0}^{t}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}+(t-s)\right] \mathrm{d} s+\right. \\ \ \ \ \ \int_{t}^{\eta}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}\right] \mathrm{d} s+\\ \ \ \ \ \left.\int_{\eta}^{1}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}\right] \mathrm{d} s\right\} \leqslant f(\eta, u(\eta))\left[\frac{\beta(1+t)}{2 \alpha-3 \beta} \times\right. \\ \ \ \ \ \int_{0}^{\eta}\left(-2 s+s^{2}\right) \mathrm{d} s+\frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \int_{0}^{\eta} \mathrm{d} s+\int_{0}^{t} t \mathrm{~d} s- \\ \ \ \ \ \left.\int_{0}^{t} s \mathrm{~d} s+\frac{\beta(1+t)}{2 \alpha-3 \beta} \int_{\eta}^{1}(1-s)^{2} \mathrm{~d} s\right] \leqslant\\ \ \ \ \ f(\eta, u(\eta))\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(\frac{1}{3}-\eta\right)+\frac{1}{2} t^{2}+\right. \\ \ \ \ \ \left.\frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \eta\right] \leqslant f(\eta, u(\eta))\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(\frac{1}{3}-\eta\right)+\right. \\ \ \ \ \ \left.\frac{2(\beta-2 \alpha)(1+t) \eta+(2 \alpha-3 \beta)}{2(2 \alpha-3 \beta)}\right] \leqslant f(\eta, u(\eta)) \times \\ \ \ \ \ {\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(\frac{1}{3}-\eta\right)+\frac{2 \eta(\beta-2 \alpha)+(2 \alpha-3 \beta)}{2 \alpha-3 \beta}\right] \leqslant 0}. \end{array} 当t ∈[η, 1]时, 有
\begin{array}{l} (T u)(t)=\int_{0}^{\eta}\left[\frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}+\frac{3 \alpha-2 \alpha\left(t+t^{2} / 2\right)}{2 \alpha-3 \beta}+\right. \\ \ \ \ \ \left.\frac{1}{2}(t-s)^{2}\right] f(s, u(s)) \mathrm{d} s+\int_{\eta}^{t}\left[\frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}+\right. \\ \ \ \ \ \left.\frac{1}{2}(t-s)^{2}\right] f(s, u(s)) \mathrm{d} s+\int_{t}^{1}\left[\frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}\right] \times \\ \ \ \ \ f(s, u(s)) \mathrm{d} s, \end{array} 则
\begin{array}{l} (T u)^{\prime}(t)= \\ \ \ \ \ \int_{0}^{\eta}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}+(t-s)\right] f(s, u(s)) \mathrm{d} s+ \\ \ \ \ \ \int_{\eta}^{t}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-(t-s)\right] f(s, u(s)) \mathrm{d} s+ \\ \ \ \ \ \int_{t}^{1}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}\right] f(s, u(s)) \mathrm{d} s \leqslant \\ \ \ \ \ f(\eta, u(\eta))\left\{\int_{0}^{\eta}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha}{2 \alpha-3 \beta}+(t-s)\right] \mathrm{d} s+\right. \\ \ \ \ \ \left.\int_{\eta}^{t}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}+(t-s)\right] \mathrm{d} s+\int_{t}^{1}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}\right] \mathrm{d} s\right\} \leqslant \\ \ \ \ \ f(\eta, u(\eta))\left\{\frac{\beta(1+t)}{2 \alpha-3 \beta} \int_{0}^{\eta}\left(s^{2}-2 s\right) \mathrm{d} s-\int_{0}^{\eta} s \mathrm{~d} s+\right.\\ \ \ \ \ \frac{\beta-2 \beta t-2 \alpha}{2 \alpha-3 \beta} \int_{0}^{\eta} \mathrm{d} s+\frac{\beta(1+t)}{2 \alpha-3 \beta} \int_{\eta}^{1}(1-s)^{2} \mathrm{~d} s+ \\ \ \ \ \ \left.\int_{\eta}^{t}(t-s) \mathrm{d} s\right\}=f(\eta, u(\eta))\left\{\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(\frac{1}{3}-\eta\right)+\right. \\ \ \ \ \ \left.\frac{1}{2} t^{2}+\frac{\beta+\beta t-2 \alpha}{2 \alpha-3 \beta} \eta-t \eta\right\} \leqslant f(\eta, u(\eta))\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(\frac{1}{3}-\eta\right)+\right. \\ \ \ \ \ \left.\frac{1}{2}+\frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \eta\right] \leqslant f(\eta, u(\eta))\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(\frac{1}{3}-\eta\right)+\right. \\ \ \ \ \ \left.\frac{1}{2}-\frac{(2 \alpha-\beta) \eta}{2 \alpha-3 \beta}\right] \leqslant 0. \end{array} 综上可知, (Tu)(t)在[0, 1]上单调递减. 又由于(Tu)(1)=0, 故(Tu)(t)在[0, 1]上非负, 从而Tu∈K. 假设D⊂K是有界集, 则存在一个常数C1>0, 使得‖ u ‖≤C1 (u∈D). 下证T(D)是相对紧的.
设C2=sup{f(t, u)|(t, u)∈[0, 1]×[0, C1]}. 对∀y∈T(D), ∃u∈D, 使得y=Tu, 则对∀t ∈[0, 1], 有
\begin{array}{l} |y(t)|=|(T u)(t)|=\left|\int_{0}^{1} G(t, s) f(s, u(s)) \mathrm{d} s\right| \leqslant \\ \ \ \ \ \ \ \int_{0}^{1}|G(t, s)| f(s, u(s)) \mathrm{d} s \leqslant M \int_{0}^{1} f(s, u(s)) \mathrm{d} s \leqslant \\ \ \ \ \ \ \ M C_{2}. \end{array} 从而知T(D)是一致有界的. 另一方面, 当ε>0, 0 < τ < min{1-η, \frac{\varepsilon }{{12{C_2}\left( {M + 1} \right)}}}时, 对∀u ∈D, 有
\int_{\eta-\tau}^{\eta+\tau} f(s, u(s)) \mathrm{d} s \leqslant 2 C_{2} \tau<\frac{\varepsilon}{6(M+1)}. (3) 因为G(t, s)在[0, 1]×[0, η-τ]和[0, 1]×[η+ τ, 1]上一致连续, 故∃δ>0, 使得对∀t1, t2 ∈[0, 1], 当|t1-t2| < δ时, 有
\left|G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right|<\frac{\varepsilon}{3\left(C_{2}+1\right)(\eta-\tau)}\ \ \ \ (s \in[0, \eta-\tau]), (4) \left|G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right|<\frac{\varepsilon}{3\left(C_{2}+1\right)\left(1-\eta^{-} \tau\right)}\ \ \ \ (s \in[\eta+\tau, 1]) . (5) 由式(3)~(5)及对∀y∈T(D), ∀t1, t2∈[0, 1]和|t1-t2| < δ, 有
\begin{array}{l} \left|y\left(t_{1}\right)-y\left(t_{2}\right)\right|=\left|T\left(t_{1}\right)-T\left(t_{1}\right)\right|= \\ \ \ \ \ \ \ \ \ \left|\int_{0}^{1}\left(G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right) f(s, u(s)) \mathrm{d} s\right|= \\ \ \ \ \ \ \ \ \ \int_{0}^{\eta-\tau}\left|G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right| f(s, u(s)) \mathrm{d} s+ \\ \ \ \ \ \ \ \ \ \int_{\eta-\tau}^{\eta+\tau}\left|G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right| f(s, u(s)) \mathrm{d} s+ \\ \ \ \ \ \ \ \ \ \int_{\eta+\tau}^{1}\left|G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right| f(s, u(s)) \mathrm{d} s \leqslant \\ \ \ \ \ \ \ \ \ C_{2} \frac{\varepsilon}{3\left(C_{2}+1\right)(\eta-\tau)}(\eta-\tau)+\frac{\varepsilon}{3(M+1)} M+ \\ \ \ \ \ \ \ \ \ C_{2} \frac{\varepsilon}{3\left(C_{2}+1\right)(1-\eta-\tau)}(1-\eta-\tau)= \\ \ \ \ \ \ \ \ \ \frac{C_{2} \varepsilon}{3\left(C_{2}+1\right)}+\frac{M \varepsilon}{3(M+1)}+\frac{C_{2} \varepsilon}{3\left(C_{2}+1\right)} \leqslant \varepsilon. \end{array} 故T(D)是等度连续的, 从而由Arzela-Ascoli定理[18]知T(D)是相对紧的. 因此, T是紧算子.
最后, 证明T是连续的. 设un (n=1, 2, …), u0 ∈K, ‖un-u0 ‖→0 (n→0), 则∃C3>0, 使得对∀n, ‖ u ‖ ≤C3.
设C4=sup{f(t, u)|(t, u)∈[0, 1]×[0, C3]}. 对∀n, t∈[0, 1], ∀s∈[0, 1], 有
G(t, s) f\left(s, u_{n}(s)\right) \leqslant M C_{4}. 由Lebesgue控制收敛定理[19], 对∀t∈[0, 1], 有
\begin{array}{l} \lim \limits_{n \rightarrow \infty}\left(T u_{n}\right)(t)=\lim \limits_{n \rightarrow \infty} \int_{0}^{1} G(t, s) f\left(s, u_{n}(s)\right) \mathrm{d} s= \\ \ \ \ \ \int_{0}^{1} G(t, s) \lim \limits_{n \rightarrow \infty} f\left(s, u_{n}(s)\right) \mathrm{d} s=\int_{0}^{1} G(t, s) f\left(s, u_{0}(s)\right) \mathrm{d} s= \\ \ \ \ \ \left(T u_{0}\right)(t), \end{array} 这表明T是连续的. 因此, T: K→K是全连续的. 证毕.
2. 主要结果及证明
定理1 假设条件(H1)、(H2)成立, 且对于f(t, 0)≠0, ∀t∈[0, 1], 存在2个正实数a和b, 满足以下条件:
\begin{array}{l} \ \ \ \ \left(\mathrm{H}_{3}\right) f(0, a) \leqslant \frac{2 \alpha-3 \beta}{3 \alpha} a ;\\ \ \ \ \ \left(\mathrm{H}_{4}\right) b\left(u_{2}-u_{1}\right) \leqslant f\left(t, u_{2}\right)-f\left(t, u_{1}\right) \leqslant 2 b\left(u_{2}-u_{1}\right) \\ \left(0 \leqslant t \leqslant 1,0 \leqslant u_{1} \leqslant u_{2} \leqslant a\right). \end{array} 构造一个迭代序列νn+1=Tνn (n=0, 1, 2, …), 其中ν0(t)=0, 则{νn}n=1∞在E中收敛到ν*, 且ν*是边值问题(1)的一个递减正解.
证明 设Ka= {u ∈K| | |u| | ≤a}. 由引理3可知Tu∈K, 且由条件(H3)得到
\begin{aligned} 0 \leqslant&(T u)(t)=\int_{0}^{1} G(t, s) f(s, u(s)) \mathrm{d} s \leqslant & \\ & \int_{0}^{1}|G(t, s)| f(0, a) \mathrm{d} s \leqslant \frac{2 \alpha-3 \beta}{3 \alpha} a M \leqslant a \quad(t \in[0,1]), \end{aligned} 从而有‖ Tu ‖ ≤a, 故T: Ka→Ka.
下证{νn}n=1∞在E中收敛到ν*, 且ν*是边值问题(1)的一个递减正解.
事实上, 对于ν0 ∈Ka和T: Ka→Ka, 有νn ∈Ka, n=0, 1, 2, …. 由于集合{νn}n=0∞是有界的且T是全连续算子, 所以集合{νn}n=0∞是相对紧的. 接下来, 通过归纳法证明{νn}n=0∞是单调的. 首先, 很明显有ν1-ν0=ν1 ∈K, 这表明ν0≤ν1. 接下来, 假设νk-1≤νk. 从而由条件(H4)可得
\begin{array}{l} \nu_{k+1}^{\prime}-\nu_{k}^{\prime}=\left(T \nu_{k}\right)^{\prime}(t)-\left(T \nu_{k-1}\right)^{\prime}(t)= \\ \ \ \ \ \int_{0}^{1} G_{t}(t, s)\left[f\left(s, \nu_{k}(s)\right)-f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s= \\ \ \ \ \ \int_{0}^{t}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}+(t-s)\right]\left[f\left(s, \nu_{k}(s)\right)-\right.\\ \ \ \ \ \left.f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s+\int_{t}^{\eta}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}\right] \times \\ \ \ \ \ {\left[f\left(s, \nu_{k}(s)\right)-f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s+\int_{\eta}^{1}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}\right] \times} \\ \ \ \ \ {\left[f\left(s, \nu_{k}(s)\right)-f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s \leqslant b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right] \times} \\ \ \ \ \ \left\{\int_{0}^{t}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}+(t-s)\right] \mathrm{d} s+\right. \\ \ \ \ \ \int_{t}^{\eta}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}\right] \mathrm{d} s+\\ \ \ \ \ \left.\int_{\eta}^{1}\left[\frac{2 \beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}\right] \mathrm{d} s\right\}=b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right] \times \\ \ \ \ \ \left\{\int_{0}^{\eta} \frac{\beta(1+t)}{2 \alpha-3 \beta}\left(s^{2}-2 s\right) \mathrm{d} s+\int_{0}^{\eta} \frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \mathrm{d} s+\right. \\ \ \ \ \ \left.\int_{0}^{t}(t-s) \mathrm{d} s+\frac{2 \beta(1+t)}{2 \alpha-3 \beta} \int_{\eta}^{1}(1-s)^{2} \mathrm{~d} s\right\}= \\ \ \ \ \ b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right]\left\{\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(-\eta^{3}+3 \eta^{2}-6 \eta+2\right)+\right. \\ \ \ \ \ \left.\frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \eta+\frac{1}{2} t^{2}\right\} \leqslant b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right] \times\\ \ \ \ \ \left\{\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(-\eta^{3}+3 \eta^{2}-6 \eta+2\right)+\frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \eta+\frac{1}{2}\right\} \leqslant \\ \ \ \ \ b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right]\left\{\frac{\beta(1+t)}{2 \alpha-3 \beta}(2-3 \eta)+\frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \eta {+}\right. \\ \ \ \ \ \left.\frac{1}{2}\right\} \leqslant b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right]\left\{\frac{\beta(1+t)(2-3 \eta)}{2 \alpha-3 \beta}+\right. \\ \ \ \ \ \left.\frac{(2 \alpha-3 \beta)-2 \eta(2 \alpha-\beta)}{2 \alpha-3 \beta}\right\} \leqslant 0 \quad(t \in[0, \eta]);\\ \nu_{k+1}^{\prime}-\nu_{k}^{\prime}=\left(T \nu_{k}\right)^{\prime}(t)-\left(T \nu_{k-1}\right)^{\prime}(t)= \\ \ \ \ \ \int_{0}^{1} G_{t}(t, s)\left[f\left(s, \nu_{k}(s)\right)-f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s= \\ \ \ \ \ \int_{0}^{\eta}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}+(t-s)\right]\left[f\left(s, \nu_{k}(s)\right)-\right. \\ \ \ \ \ \left.f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s+\int_{\eta}^{t}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-(t-s)\right] \times \\ \ \ \ \ {\left[f\left(s, \nu_{k}(s)\right)-f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s+}\\ \ \ \ \ \int_{t}^{1}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}\right]\left[f\left(s, \nu_{k}(s)\right)-f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s \leqslant \\ \ \ \ \ b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right]\left\{\frac{\beta(1+t)}{2 \alpha-3 \beta} \int_{0}^{\eta}\left(-2 s+s^{2}\right) \mathrm{d} s+\right. \\ \ \ \ \ \frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \int_{0}^{\eta} \mathrm{d} s+\int_{0}^{\eta}(t-s) \mathrm{d} s+\frac{2 \beta(1+t)}{2 \alpha-3 \beta} \int_{\eta}^{1}(1-s)^{2} \mathrm{~d} s+ \\ \ \ \ \ \left.2 \int_{\eta}^{t}(t-s) \mathrm{d} s\right\}=b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right]\left[\frac{\beta(1+t)}{3(2 \alpha-3 \beta)} \times\right. \\ \ \ \ \ \left.\left(-\eta^{3}+3 \eta^{2}-6 \eta+2\right)+t^{2}+\frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \eta-t \eta+\frac{1}{2} \eta^{2}\right] \leqslant\\ \ \ \ \ b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right]\left[\frac{\beta(1+t)}{3(2 \alpha-3 \beta)}(-5 \eta+2)+\right. \\ \ \ \ \ \left.\frac{t[(2 \alpha-3 \beta)-\eta(2 \alpha-\beta)]-\eta(2 \alpha-\beta)}{2 \alpha-3 \beta}\right] \leqslant \\ \ \ \ \ b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right]\left[\frac{\beta(1+t)}{3(2 \alpha-3 \beta)}(-5 \eta+2)-\right. \\ \ \ \ \ \left.\frac{\eta(2 \alpha-\beta)}{2 \alpha-3 \beta}\right] \leqslant 0 . \end{array} 因此,
\nu_{k+1}^{\prime}(t)-\nu_{k}^{\prime}(t) \leqslant 0 \quad(t \in[0,1]), (6) 即νk+1(t)-νk(t)在[0, 1]上单调递减. 与此同时, 易得
\nu_{k+1}(1)-\nu_{k}(1)=\int_{0}^{1} G(1, s) f\left(s, \nu_{k+1}(s)-\nu_{k}(s)\right) \mathrm{d} s=0, (7) 从而νk+1(t)-νk(t)≥0 (t∈[0, 1]).
由式(6)和式(7)可知νk+1-νk ∈K, 则νk+1≤νk (n=0, 1, 2, …). 由于{νn}n=1∞是相对紧集, 并且是单调的, 因此, 必存在一个ν*∈Ka, 使得\mathop {\lim }\limits_{n \to \infty } νn=ν*. 再由T的连续性以及νn+1=Tνn可知ν*=Tν*. 这表明ν*是边值问题(1)单调递减的非负解. 此外, 根据f(t, 0)≠0 (t ∈[0, 1])知, 0不是边值问题(1)的解, 从而ν*是边值问题(1)的正解. 证毕.
-
[1] SUN Y P. Positive solutions of singular third-order three-point boundary value problem[J]. Journal of Mathematical Analysis and Applications, 2005, 306(2): 589-603. doi: 10.1016/j.jmaa.2004.10.029
[2] GUO L J, SUN J P, ZHAO Y H. Existence of positive solutions for nonlinear third-order three-point boundary value problems[J]. Nonlinear Analysis, 2008, 68(10): 3151-3158. doi: 10.1016/j.na.2007.03.008
[3] YAO Q L. The existence and multiplicity of positive solutions for a third-order three-point boundary value pro-blem[J]. Acta Mathematicae Applicatae Sinica, 2003, 19(1): 117-122. doi: 10.1007/s10255-003-0087-1
[4] YAO Q L. Positive solutions of singular third-order three-point boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2009, 354(1): 207-212. doi: 10.1016/j.jmaa.2008.12.057
[5] TORRES F J. Positive solutions for a third-order three-point boundary-value problem[J]. Electronic Journal of Differential Equations, 2013, 2013(147): 1-11.
[6] JANKOWSKI T. Existence of positive solutions to third order differential equations with advanced arguments and nonlocal boundary conditions[J]. Nonlinear Analysis Theory Methods and Applications, 2012, 75(2): 913-923. doi: 10.1016/j.na.2011.09.025
[7] PALAMIDES A P, STAVRAKAKIS N M. Existence and uniqueness of a positive solution for a third-order three-point boundary-value problem[J]. Electronic Journal of Differential Equations, 2010, 2010(155): 1-12. http://www.ams.org/mathscinet-getitem?mr=2740596
[8] SUN J P, ZHAO J. Multiple positive solutions for a third-order three-point BVP with sign-changing Green's function[J]. Electronic Journal of Differential Equations, 2012, 2012(118): 1-7. http://www.ams.org/mathscinet-getitem?mr=3065778
[9] LI X L, SUN J P, KONG F D. Existence of positive solution for a third-order three-point BVP with sign-changing Green's function[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2013(30): 1-11. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=90330242&site=ehost-live
[10] GAO L J, SUN J P. Positive solutions of a third-order three-point BVP with sign-changing Green's function[J]. Mathematical Problems in Engineering, 2014, 2014: 406815/1-6. http://www.ams.org/mathscinet-getitem?mr=3065778
[11] ZHAO Y H, LI X L. Iteration for a third-order three-point BVP with sign-changing Green's function[J]. Journal of Applied Mathematics, 2014, 2014: 541234/1-6. http://www.ams.org/mathscinet-getitem?mr=3065778
[12] XU Y J, TIAN W W, GAO C H. Existence of positive solutions of discrete third-order three-point BVP with sign-changing Green's function[J]. Advances in Difference Equations, 2019, 2019: 206/1-19. http://www.researchgate.net/publication/333432465_Existence_of_positive_solutions_of_discrete_third-order_three-point_BVP_with_sign-changing_Green's_function
[13] WANG J, GAO C H. Positive solutions of discrete third-order boundary value problems with sign-changing Green's function[J]. Advances in Difference Equations, 2015, 2015: 56/1-10.
[14] HAI D D. Existence of positive solutions for periodic boundary value problem with sign-changing Green's function[J]. Positivity, 2018, 22(5): 1269-1279. doi: 10.1007/s11117-018-0573-6
[15] ELSANOSI M E M. Positive solutions of nonlinear neumann boundary value problems with sign-changing Green's function[J]. Kyungpook Mathematical Journal, 2019, 59(1): 65-71. http://www.researchgate.net/publication/332321002_Positive_Solutions_of_Nonlinear_Neumann_Boundary_Value_Problems_with_Sign-Changing_Green's_Function
[16] 达举霞, 霍梅, 韩晓玲. 带变号格林函数的四阶三点边值问题的多个正解的存在性[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 109-113. http://journal-n.scnu.edu.cn/article/id/3845 DA J X, HUO M, HAN X L. Existence of multiple positive solutions for a fourth-order three-point BVP with sign-changing Green's function[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(3): 109-113. http://journal-n.scnu.edu.cn/article/id/3845
[17] DJOURDEM H, BENAICHA S, BOUTERAA N. Two positive solutions for a fourth-order three-point BVP with sign-changing Green's function[J]. Communications in Advanced Mathematical Sciences, 2019, 2(1): 60-68. http://www.ams.org/mathscinet-getitem?mr=3065778
[18] 郭大钧. 非线性泛函分析[M]. 济南: 山东科学技术出版社, 2002. [19] 程其襄. 实变函数与泛函分析基础[M]. 北京: 高等教育出版社, 1983. -
期刊类型引用(1)
1. 武晨. 一类非线性微分方程三阶三点边值问题三个正解的存在性. 淮北师范大学学报(自然科学版). 2022(03): 7-10 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 533
- HTML全文浏览量: 203
- PDF下载量: 49
- 被引次数: 1