Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

带变号格林函数的三阶三点边值问题的正解的存在性

雷策宇, 韩晓玲

雷策宇, 韩晓玲. 带变号格林函数的三阶三点边值问题的正解的存在性[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 104-109. DOI: 10.6054/j.jscnun.2021032
引用本文: 雷策宇, 韩晓玲. 带变号格林函数的三阶三点边值问题的正解的存在性[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 104-109. DOI: 10.6054/j.jscnun.2021032
LEI Ceyu, HAN Xiaoling. The Existence of Positive Solutions to A Third-order Three-point Boundary Value Problem with Sign-changing Green's Function[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 104-109. DOI: 10.6054/j.jscnun.2021032
Citation: LEI Ceyu, HAN Xiaoling. The Existence of Positive Solutions to A Third-order Three-point Boundary Value Problem with Sign-changing Green's Function[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 104-109. DOI: 10.6054/j.jscnun.2021032

带变号格林函数的三阶三点边值问题的正解的存在性

基金项目: 

国家自然科学基金项目 11561063

详细信息
    通讯作者:

    韩晓玲, Email: hanxiaoling9@163.com

  • 中图分类号: O175.8

The Existence of Positive Solutions to A Third-order Three-point Boundary Value Problem with Sign-changing Green's Function

  • 摘要: 应用格林函数的性质和迭代法, 研究了一类具有变号格林函数的三阶三点边值问题 {u(t)=f(t,u(t))(t[0,1]),u(1)=0,u(0)=u(0),αu(η)+βu(0)=0 正解的存在性, 其中, fC([0, 1]×[0, ∞), [0, ∞)), α∈[0, 1], 27α < β < 23α, η∈[23, 1). 得到了该边值问题正解存在性的条件.
    Abstract: Using the properties of Green's function and the iterative method, the existence of positive solutions to a class of third-order three-point boundary value problems with sign-changing Green's function is studied: {u(t)=f(t,u(t))(t[0,1]),u(1)=0,u(0)=u(0),αu(η)+βu(0)=0, where fC([0, 1]×[0, ∞), [0, ∞)), α∈[0, 1], 27α < β < 23α, η∈[23, 1). The conditions for the existence of positive solutions to the boundary value problem are obtained.
  • 三阶常微分方程边值问题由于在工程、物理和流体力学等领域的显著应用而受到广泛关注. 学者们运用单调迭代法、上下解方法、Guo-Krasnosel'skii不动点定理和Leray-Schauder非线性抉择等, 研究了三阶三点边值问题在格林函数非负的情况下的单个或多个正解的存在性[1-7]. 近年来, 学者们在格林函数变号的情况下也得到了很多结果[8-17]. 如: LI等[9]使用Guo-Krasnosel'skii不动点定理讨论了变号格林函数的三阶三点边值问题

    {u(t)=f(t,u(t))(t[0,1]),u(1)=u(0)=0,u(η)+αu(0)=0

    正解的存在性, 其中, α ∈[0, 2), η[121+24α53(4+α),1).

    GAO和SUN[10]运用Avery-Henderson不动点定理, 在格林函数变号时讨论了问题

    {u(t)=f(t,u(t))(t[0,1]),u(1)=u(0)=0,u(η)αu(1)=0

    正解的存在性, 其中, α ∈[0, 2), η[4+α243α,1).

    ZHAO和LI[11]运用迭代法讨论了变号格林函数的三阶三点边值问题

    {u(t)=f(t,u(t))(t[0,1]),u(1)=u(0)=0,u(η)+αu(0)=0

    正解的存在性, 其中, α∈[0, 2), η∈[2/3, 1).

    受文献[11]的启发, 本文将运用迭代法, 研究如下具有变号格林函数的三阶三点边值问题

    {u(t)=f(t,u(t))(t[0,1]),u(1)=0,u(0)=u(0),αu(η)+βu(0)=0 (1)

    正解的存在性, 其中, α ∈[0, 1], 27α < β < 23α, η ∈[2/3, 1). 在本文中, 总是假设fC([0, 1]×[0, ∞), [0, ∞)), 且f满足下列2个条件:

    (H1) 对于每一个u∈[0, +∞), 映射tf(t, u)是递减的;

    (H2) 对于每一个t∈[0, 1], 映射uf(t, u)是递增的.

    本文所用到的空间是C[0, 1], 记E=C[0, 1], ‖u‖=maxt[0,1]|u(t)|.

    引理1  对任意的yC[0, 1], 边值问题

    {u(t)=y(s)(t[0,1]),u(1)=0,u(0)=u(0),αu(η)+βu(0)=0 (2)

    有唯一解

    u(t)=10G(t,s)f(s,u(s))ds,

    其中:

    G(t,s)=g1(t,s)+g2(t,s)+g3(η,t,s);g1(t,s)=β(t+t2/2)α2α3β(1s)2;g2(t,s)={0(0

    证明  对u'''(t)=y(t)在[0, t]上两边积分, 得

    \begin{array}{c} u^{\prime \prime}(t)=u^{\prime \prime}(0)-\int_{0}^{t} y(s) \mathrm{d} s ,\\ u^{\prime}(t)=u^{\prime}(0)+u^{\prime \prime}(0) t-\int_{0}^{t}(t-s) y(s) \mathrm{d} s ,\\ u(t)=u(0)+u^{\prime}(0) t+\frac{1}{2} u^{\prime \prime}(t) t^{2}+\frac{1}{2} \int_{0}^{t}(t-s)^{2} y(s) \mathrm{d} s, \end{array}

    由边界条件可得

    \begin{array}{c} u(0)+\frac{3}{2} u^{\prime}(0)+\frac{1}{2} \int_{0}^{1}(1-s)^{2} y(s) \mathrm{d} s=0,\\ \alpha u^{\prime}(0)+\alpha \int_{0}^{\eta} y(s) \mathrm{d} s+\beta u(0)=0. \end{array}

    从而有

    \begin{array}{l} u(0)=\frac{3 \alpha}{2 \alpha-3 \beta} \int_{0}^{\eta} y(s) \mathrm{d} s-\frac{\alpha}{2 \alpha-3 \beta} \int_{0}^{1}(1-s)^{2} y(s) \mathrm{d} s ,\\ u^{\prime}(0)=\frac{\beta}{2 \alpha-3 \beta} \int_{0}^{1}(1-s)^{2} y(s) \mathrm{d} s-\frac{2 \alpha}{2 \alpha-3 \beta} \int_{0}^{\eta} y(s) \mathrm{d} s. \end{array}

    故边值问题(2)的解为

    \begin{aligned} u(t)=& \frac{3 \alpha-2 \alpha\left(t+t^{2} / 2\right)}{2 \alpha-3 \beta} \int_{0}^{\eta} y(s) \mathrm{d} s+\\ & \frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta} \int_{0}^{1}(1-s)^{2} y(s) \mathrm{d} s+\\ & \frac{1}{2} \int_{0}^{t}(t-s)^{2} y(s) \mathrm{d} s. \end{aligned}

    证毕.

    引理2  G(t, s)具有如下性质:

    (1) 当0≤sη时, G(t, s)≥0;

    (2) 当0≤ηs时, G(t, s)≤0.

    证明  当0≤sη时, 有

    \begin{array}{l} G(t, s)= \\ \left\{\begin{array}{l} \frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}+\frac{3 \alpha-2 \alpha\left(t+t^{2} / 2\right)}{2 \alpha-3 \beta} \quad(0 \leqslant t \leqslant s \leqslant 1), \\ \frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}+\frac{3 \alpha-2 \alpha\left(t+t^{2} / 2\right)}{2 \alpha-3 \beta}+\frac{1}{2}(t-s)^{2} \\ \quad(0 \leqslant s \leqslant t \leqslant 1) . \end{array}\right. \end{array}

    分以下2种情况讨论:

    (1) 当0≤ts≤1时, 有

    \begin{array}{c} G_{t}(t, s)=\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}= \\ \frac{(1+t)\left[\beta(1-s)^{2}-2 \alpha\right]}{2 \alpha-3 \beta}<0; \end{array}

    (2) 当0≤st≤1时, 有

    \begin{array}{l} G_{t}(t, s)=\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}+(t-s)= \\ \ \ \ \ \frac{(\beta-\alpha)+\left(\beta s^{2}-\alpha\right)+\beta t\left(s^{2}-2\right)+s(\beta-2 \alpha)-2 \beta t s}{2 \alpha-3 \beta}<0. \end{array}

    综上可知, G(t, s)关于变量t单调递减. 从而有

    \begin{array}{c} \min \{G(t, s), t \in[0,1]\}=G(1, s)=0, \\ \max \{G(t, s), t \in[0,1]\}=G(0, s)=\frac{3 \alpha-\alpha(1-s)^{2}}{2 \alpha-3 \beta}>0 . \end{array}

    故当0≤sη时, G(t, s)≥0.

    同理可证得: 当0≤ηs时, G(t, s)关于变量t单调递增. 则有

    \begin{array}{c} \max \{G(t, s), t \in[0,1]\}=G(1, s)=0,\\ \min \{G(t, s), t \in[0,1]\}=G(0, s)=-\frac{\alpha(1-s)}{2 \alpha-3 \beta}<0 . \end{array}

    从而G(t, s)≤0. 证毕.

    M=max{|G(t, s)| |t, s ∈[0, 1]}, 则

    M=\max \left\{\frac{3 \alpha-\alpha(1-s)^{2}}{2 \alpha-3 \beta}, \frac{\alpha(1-s)}{2 \alpha-3 \beta}\right\}<\frac{3 \alpha}{2 \alpha-3 \beta}.

    K={yE|y(t)在[0, 1]上非负且递减}, 则KE中的一个锥, 且在E中定义一个序关系“≤”, uν当且仅当ν-uK.

    定义算子T: KE

    (T u)(t)=\int_{0}^{1} G(t, s) f(s, u(s)) \mathrm{d} s \quad(u \in K, t \in[0,1]).

    显然, 若uT中的不动点, 则u是边值问题(1)的递减非负解.

    引理3  算子T: KK是全连续的.

    证明  设uK, 当t∈[0, η]时, 有

    \begin{array}{l} (T u)(t)=\int_{0}^{t}\left[\frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}+\right. \\ \ \ \ \ \ \ \ \ \left.\frac{3 \alpha-2 \alpha\left(t+t^{2} / 2\right)}{2 \alpha-3 \beta}+\frac{1}{2}(t-s)^{2}\right] f(s, u(s)) \mathrm{d} s+ \\ \ \ \ \ \ \ \ \ \int_{t}^{\eta}\left[\frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}+\frac{3 \alpha-2 \alpha\left(t+t^{2} / 2\right)}{2 \alpha-3 \beta}\right] \times \\ \ \ \ \ \ \ \ \ f(s, u(s)) \mathrm{d} s+\int_{\eta}^{1}\left[\frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}\right] \times \\ \ \ \ \ \ \ \ \ f(s, u(s)) \mathrm{d} s . \end{array}

    由条件(H1)、(H2), 可得

    \begin{array}{l} (T u)^{\prime}(t)= \\ \ \ \ \ \int_{0}^{t}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}+(t-s)\right] f(s, u(s)) \mathrm{d} s+ \\ \ \ \ \ \int_{t}^{\eta}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}\right] f(s, u(s)) \mathrm{d} s+ \\ \ \ \ \ \int_{\eta}^{1}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}\right] f(s, u(s)) \mathrm{d} s \leqslant \\ \ \ \ \ f(\eta, u(\eta))\left\{\int_{0}^{t}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}+(t-s)\right] \mathrm{d} s+\right. \\ \ \ \ \ \int_{t}^{\eta}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}\right] \mathrm{d} s+\\ \ \ \ \ \left.\int_{\eta}^{1}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}\right] \mathrm{d} s\right\} \leqslant f(\eta, u(\eta))\left[\frac{\beta(1+t)}{2 \alpha-3 \beta} \times\right. \\ \ \ \ \ \int_{0}^{\eta}\left(-2 s+s^{2}\right) \mathrm{d} s+\frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \int_{0}^{\eta} \mathrm{d} s+\int_{0}^{t} t \mathrm{~d} s- \\ \ \ \ \ \left.\int_{0}^{t} s \mathrm{~d} s+\frac{\beta(1+t)}{2 \alpha-3 \beta} \int_{\eta}^{1}(1-s)^{2} \mathrm{~d} s\right] \leqslant\\ \ \ \ \ f(\eta, u(\eta))\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(\frac{1}{3}-\eta\right)+\frac{1}{2} t^{2}+\right. \\ \ \ \ \ \left.\frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \eta\right] \leqslant f(\eta, u(\eta))\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(\frac{1}{3}-\eta\right)+\right. \\ \ \ \ \ \left.\frac{2(\beta-2 \alpha)(1+t) \eta+(2 \alpha-3 \beta)}{2(2 \alpha-3 \beta)}\right] \leqslant f(\eta, u(\eta)) \times \\ \ \ \ \ {\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(\frac{1}{3}-\eta\right)+\frac{2 \eta(\beta-2 \alpha)+(2 \alpha-3 \beta)}{2 \alpha-3 \beta}\right] \leqslant 0}. \end{array}

    t ∈[η, 1]时, 有

    \begin{array}{l} (T u)(t)=\int_{0}^{\eta}\left[\frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}+\frac{3 \alpha-2 \alpha\left(t+t^{2} / 2\right)}{2 \alpha-3 \beta}+\right. \\ \ \ \ \ \left.\frac{1}{2}(t-s)^{2}\right] f(s, u(s)) \mathrm{d} s+\int_{\eta}^{t}\left[\frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}+\right. \\ \ \ \ \ \left.\frac{1}{2}(t-s)^{2}\right] f(s, u(s)) \mathrm{d} s+\int_{t}^{1}\left[\frac{\beta\left(t+t^{2} / 2\right)-\alpha}{2 \alpha-3 \beta}(1-s)^{2}\right] \times \\ \ \ \ \ f(s, u(s)) \mathrm{d} s, \end{array}

    \begin{array}{l} (T u)^{\prime}(t)= \\ \ \ \ \ \int_{0}^{\eta}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}+(t-s)\right] f(s, u(s)) \mathrm{d} s+ \\ \ \ \ \ \int_{\eta}^{t}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-(t-s)\right] f(s, u(s)) \mathrm{d} s+ \\ \ \ \ \ \int_{t}^{1}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}\right] f(s, u(s)) \mathrm{d} s \leqslant \\ \ \ \ \ f(\eta, u(\eta))\left\{\int_{0}^{\eta}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha}{2 \alpha-3 \beta}+(t-s)\right] \mathrm{d} s+\right. \\ \ \ \ \ \left.\int_{\eta}^{t}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}+(t-s)\right] \mathrm{d} s+\int_{t}^{1}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}\right] \mathrm{d} s\right\} \leqslant \\ \ \ \ \ f(\eta, u(\eta))\left\{\frac{\beta(1+t)}{2 \alpha-3 \beta} \int_{0}^{\eta}\left(s^{2}-2 s\right) \mathrm{d} s-\int_{0}^{\eta} s \mathrm{~d} s+\right.\\ \ \ \ \ \frac{\beta-2 \beta t-2 \alpha}{2 \alpha-3 \beta} \int_{0}^{\eta} \mathrm{d} s+\frac{\beta(1+t)}{2 \alpha-3 \beta} \int_{\eta}^{1}(1-s)^{2} \mathrm{~d} s+ \\ \ \ \ \ \left.\int_{\eta}^{t}(t-s) \mathrm{d} s\right\}=f(\eta, u(\eta))\left\{\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(\frac{1}{3}-\eta\right)+\right. \\ \ \ \ \ \left.\frac{1}{2} t^{2}+\frac{\beta+\beta t-2 \alpha}{2 \alpha-3 \beta} \eta-t \eta\right\} \leqslant f(\eta, u(\eta))\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(\frac{1}{3}-\eta\right)+\right. \\ \ \ \ \ \left.\frac{1}{2}+\frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \eta\right] \leqslant f(\eta, u(\eta))\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(\frac{1}{3}-\eta\right)+\right. \\ \ \ \ \ \left.\frac{1}{2}-\frac{(2 \alpha-\beta) \eta}{2 \alpha-3 \beta}\right] \leqslant 0. \end{array}

    综上可知, (Tu)(t)在[0, 1]上单调递减. 又由于(Tu)(1)=0, 故(Tu)(t)在[0, 1]上非负, 从而TuK. 假设DK是有界集, 则存在一个常数C1>0, 使得‖ u ‖≤C1 (uD). 下证T(D)是相对紧的.

    C2=sup{f(t, u)|(t, u)∈[0, 1]×[0, C1]}. 对∀yT(D), ∃uD, 使得y=Tu, 则对∀t ∈[0, 1], 有

    \begin{array}{l} |y(t)|=|(T u)(t)|=\left|\int_{0}^{1} G(t, s) f(s, u(s)) \mathrm{d} s\right| \leqslant \\ \ \ \ \ \ \ \int_{0}^{1}|G(t, s)| f(s, u(s)) \mathrm{d} s \leqslant M \int_{0}^{1} f(s, u(s)) \mathrm{d} s \leqslant \\ \ \ \ \ \ \ M C_{2}. \end{array}

    从而知T(D)是一致有界的. 另一方面, 当ε>0, 0 < τ < min{1-η, \frac{\varepsilon }{{12{C_2}\left( {M + 1} \right)}}}时, 对∀uD, 有

    \int_{\eta-\tau}^{\eta+\tau} f(s, u(s)) \mathrm{d} s \leqslant 2 C_{2} \tau<\frac{\varepsilon}{6(M+1)}. (3)

    因为G(t, s)在[0, 1]×[0, η-τ]和[0, 1]×[η+ τ, 1]上一致连续, 故∃δ>0, 使得对∀t1, t2 ∈[0, 1], 当|t1-t2| < δ时, 有

    \left|G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right|<\frac{\varepsilon}{3\left(C_{2}+1\right)(\eta-\tau)}\ \ \ \ (s \in[0, \eta-\tau]), (4)
    \left|G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right|<\frac{\varepsilon}{3\left(C_{2}+1\right)\left(1-\eta^{-} \tau\right)}\ \ \ \ (s \in[\eta+\tau, 1]) . (5)

    由式(3)~(5)及对∀yT(D), ∀t1, t2∈[0, 1]和|t1-t2| < δ, 有

    \begin{array}{l} \left|y\left(t_{1}\right)-y\left(t_{2}\right)\right|=\left|T\left(t_{1}\right)-T\left(t_{1}\right)\right|= \\ \ \ \ \ \ \ \ \ \left|\int_{0}^{1}\left(G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right) f(s, u(s)) \mathrm{d} s\right|= \\ \ \ \ \ \ \ \ \ \int_{0}^{\eta-\tau}\left|G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right| f(s, u(s)) \mathrm{d} s+ \\ \ \ \ \ \ \ \ \ \int_{\eta-\tau}^{\eta+\tau}\left|G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right| f(s, u(s)) \mathrm{d} s+ \\ \ \ \ \ \ \ \ \ \int_{\eta+\tau}^{1}\left|G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right| f(s, u(s)) \mathrm{d} s \leqslant \\ \ \ \ \ \ \ \ \ C_{2} \frac{\varepsilon}{3\left(C_{2}+1\right)(\eta-\tau)}(\eta-\tau)+\frac{\varepsilon}{3(M+1)} M+ \\ \ \ \ \ \ \ \ \ C_{2} \frac{\varepsilon}{3\left(C_{2}+1\right)(1-\eta-\tau)}(1-\eta-\tau)= \\ \ \ \ \ \ \ \ \ \frac{C_{2} \varepsilon}{3\left(C_{2}+1\right)}+\frac{M \varepsilon}{3(M+1)}+\frac{C_{2} \varepsilon}{3\left(C_{2}+1\right)} \leqslant \varepsilon. \end{array}

    T(D)是等度连续的, 从而由Arzela-Ascoli定理[18]T(D)是相对紧的. 因此, T是紧算子.

    最后, 证明T是连续的. 设un (n=1, 2, …), u0K, ‖un-u0 ‖→0 (n→0), 则∃C3>0, 使得对∀n, ‖ u ‖ ≤C3.

    C4=sup{f(t, u)|(t, u)∈[0, 1]×[0, C3]}. 对∀n, t∈[0, 1], ∀s∈[0, 1], 有

    G(t, s) f\left(s, u_{n}(s)\right) \leqslant M C_{4}.

    由Lebesgue控制收敛定理[19], 对∀t∈[0, 1], 有

    \begin{array}{l} \lim \limits_{n \rightarrow \infty}\left(T u_{n}\right)(t)=\lim \limits_{n \rightarrow \infty} \int_{0}^{1} G(t, s) f\left(s, u_{n}(s)\right) \mathrm{d} s= \\ \ \ \ \ \int_{0}^{1} G(t, s) \lim \limits_{n \rightarrow \infty} f\left(s, u_{n}(s)\right) \mathrm{d} s=\int_{0}^{1} G(t, s) f\left(s, u_{0}(s)\right) \mathrm{d} s= \\ \ \ \ \ \left(T u_{0}\right)(t), \end{array}

    这表明T是连续的. 因此, T: KK是全连续的. 证毕.

    定理1  假设条件(H1)、(H2)成立, 且对于f(t, 0)≠0, ∀t∈[0, 1], 存在2个正实数ab, 满足以下条件:

    \begin{array}{l} \ \ \ \ \left(\mathrm{H}_{3}\right) f(0, a) \leqslant \frac{2 \alpha-3 \beta}{3 \alpha} a ;\\ \ \ \ \ \left(\mathrm{H}_{4}\right) b\left(u_{2}-u_{1}\right) \leqslant f\left(t, u_{2}\right)-f\left(t, u_{1}\right) \leqslant 2 b\left(u_{2}-u_{1}\right) \\ \left(0 \leqslant t \leqslant 1,0 \leqslant u_{1} \leqslant u_{2} \leqslant a\right). \end{array}

    构造一个迭代序列νn+1=n (n=0, 1, 2, …), 其中ν0(t)=0, 则{νn}n=1E中收敛到ν*, 且ν*是边值问题(1)的一个递减正解.

    证明  设Ka= {uK| | |u| | ≤a}. 由引理3可知TuK, 且由条件(H3)得到

    \begin{aligned} 0 \leqslant&(T u)(t)=\int_{0}^{1} G(t, s) f(s, u(s)) \mathrm{d} s \leqslant & \\ & \int_{0}^{1}|G(t, s)| f(0, a) \mathrm{d} s \leqslant \frac{2 \alpha-3 \beta}{3 \alpha} a M \leqslant a \quad(t \in[0,1]), \end{aligned}

    从而有‖ Tu ‖ ≤a, 故T: KaKa.

    下证{νn}n=1E中收敛到ν*, 且ν*是边值问题(1)的一个递减正解.

    事实上, 对于ν0KaT: KaKa, 有νnKa, n=0, 1, 2, …. 由于集合{νn}n=0是有界的且T是全连续算子, 所以集合{νn}n=0是相对紧的. 接下来, 通过归纳法证明{νn}n=0是单调的. 首先, 很明显有ν1-ν0=ν1K, 这表明ν0ν1. 接下来, 假设νk-1νk. 从而由条件(H4)可得

    \begin{array}{l} \nu_{k+1}^{\prime}-\nu_{k}^{\prime}=\left(T \nu_{k}\right)^{\prime}(t)-\left(T \nu_{k-1}\right)^{\prime}(t)= \\ \ \ \ \ \int_{0}^{1} G_{t}(t, s)\left[f\left(s, \nu_{k}(s)\right)-f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s= \\ \ \ \ \ \int_{0}^{t}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}+(t-s)\right]\left[f\left(s, \nu_{k}(s)\right)-\right.\\ \ \ \ \ \left.f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s+\int_{t}^{\eta}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}\right] \times \\ \ \ \ \ {\left[f\left(s, \nu_{k}(s)\right)-f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s+\int_{\eta}^{1}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}\right] \times} \\ \ \ \ \ {\left[f\left(s, \nu_{k}(s)\right)-f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s \leqslant b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right] \times} \\ \ \ \ \ \left\{\int_{0}^{t}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}+(t-s)\right] \mathrm{d} s+\right. \\ \ \ \ \ \int_{t}^{\eta}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}\right] \mathrm{d} s+\\ \ \ \ \ \left.\int_{\eta}^{1}\left[\frac{2 \beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}\right] \mathrm{d} s\right\}=b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right] \times \\ \ \ \ \ \left\{\int_{0}^{\eta} \frac{\beta(1+t)}{2 \alpha-3 \beta}\left(s^{2}-2 s\right) \mathrm{d} s+\int_{0}^{\eta} \frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \mathrm{d} s+\right. \\ \ \ \ \ \left.\int_{0}^{t}(t-s) \mathrm{d} s+\frac{2 \beta(1+t)}{2 \alpha-3 \beta} \int_{\eta}^{1}(1-s)^{2} \mathrm{~d} s\right\}= \\ \ \ \ \ b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right]\left\{\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(-\eta^{3}+3 \eta^{2}-6 \eta+2\right)+\right. \\ \ \ \ \ \left.\frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \eta+\frac{1}{2} t^{2}\right\} \leqslant b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right] \times\\ \ \ \ \ \left\{\frac{\beta(1+t)}{2 \alpha-3 \beta}\left(-\eta^{3}+3 \eta^{2}-6 \eta+2\right)+\frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \eta+\frac{1}{2}\right\} \leqslant \\ \ \ \ \ b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right]\left\{\frac{\beta(1+t)}{2 \alpha-3 \beta}(2-3 \eta)+\frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \eta {+}\right. \\ \ \ \ \ \left.\frac{1}{2}\right\} \leqslant b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right]\left\{\frac{\beta(1+t)(2-3 \eta)}{2 \alpha-3 \beta}+\right. \\ \ \ \ \ \left.\frac{(2 \alpha-3 \beta)-2 \eta(2 \alpha-\beta)}{2 \alpha-3 \beta}\right\} \leqslant 0 \quad(t \in[0, \eta]);\\ \nu_{k+1}^{\prime}-\nu_{k}^{\prime}=\left(T \nu_{k}\right)^{\prime}(t)-\left(T \nu_{k-1}\right)^{\prime}(t)= \\ \ \ \ \ \int_{0}^{1} G_{t}(t, s)\left[f\left(s, \nu_{k}(s)\right)-f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s= \\ \ \ \ \ \int_{0}^{\eta}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-\frac{2 \alpha(1+t)}{2 \alpha-3 \beta}+(t-s)\right]\left[f\left(s, \nu_{k}(s)\right)-\right. \\ \ \ \ \ \left.f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s+\int_{\eta}^{t}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}-(t-s)\right] \times \\ \ \ \ \ {\left[f\left(s, \nu_{k}(s)\right)-f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s+}\\ \ \ \ \ \int_{t}^{1}\left[\frac{\beta(1+t)}{2 \alpha-3 \beta}(1-s)^{2}\right]\left[f\left(s, \nu_{k}(s)\right)-f\left(s, \nu_{k-1}(s)\right)\right] \mathrm{d} s \leqslant \\ \ \ \ \ b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right]\left\{\frac{\beta(1+t)}{2 \alpha-3 \beta} \int_{0}^{\eta}\left(-2 s+s^{2}\right) \mathrm{d} s+\right. \\ \ \ \ \ \frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \int_{0}^{\eta} \mathrm{d} s+\int_{0}^{\eta}(t-s) \mathrm{d} s+\frac{2 \beta(1+t)}{2 \alpha-3 \beta} \int_{\eta}^{1}(1-s)^{2} \mathrm{~d} s+ \\ \ \ \ \ \left.2 \int_{\eta}^{t}(t-s) \mathrm{d} s\right\}=b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right]\left[\frac{\beta(1+t)}{3(2 \alpha-3 \beta)} \times\right. \\ \ \ \ \ \left.\left(-\eta^{3}+3 \eta^{2}-6 \eta+2\right)+t^{2}+\frac{(\beta-2 \alpha)(1+t)}{2 \alpha-3 \beta} \eta-t \eta+\frac{1}{2} \eta^{2}\right] \leqslant\\ \ \ \ \ b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right]\left[\frac{\beta(1+t)}{3(2 \alpha-3 \beta)}(-5 \eta+2)+\right. \\ \ \ \ \ \left.\frac{t[(2 \alpha-3 \beta)-\eta(2 \alpha-\beta)]-\eta(2 \alpha-\beta)}{2 \alpha-3 \beta}\right] \leqslant \\ \ \ \ \ b\left[\nu_{k}(\eta)-\nu_{k-1}(\eta)\right]\left[\frac{\beta(1+t)}{3(2 \alpha-3 \beta)}(-5 \eta+2)-\right. \\ \ \ \ \ \left.\frac{\eta(2 \alpha-\beta)}{2 \alpha-3 \beta}\right] \leqslant 0 . \end{array}

    因此,

    \nu_{k+1}^{\prime}(t)-\nu_{k}^{\prime}(t) \leqslant 0 \quad(t \in[0,1]), (6)

    νk+1(t)-νk(t)在[0, 1]上单调递减. 与此同时, 易得

    \nu_{k+1}(1)-\nu_{k}(1)=\int_{0}^{1} G(1, s) f\left(s, \nu_{k+1}(s)-\nu_{k}(s)\right) \mathrm{d} s=0, (7)

    从而νk+1(t)-νk(t)≥0 (t∈[0, 1]).

    由式(6)和式(7)可知νk+1-νkK, 则νk+1νk (n=0, 1, 2, …). 由于{νn}n=1是相对紧集, 并且是单调的, 因此, 必存在一个ν*Ka, 使得\mathop {\lim }\limits_{n \to \infty } νn=ν*. 再由T的连续性以及νn+1=n可知ν*=*. 这表明ν*是边值问题(1)单调递减的非负解. 此外, 根据f(t, 0)≠0 (t ∈[0, 1])知, 0不是边值问题(1)的解, 从而ν*是边值问题(1)的正解. 证毕.

  • [1]

    SUN Y P. Positive solutions of singular third-order three-point boundary value problem[J]. Journal of Mathematical Analysis and Applications, 2005, 306(2): 589-603. doi: 10.1016/j.jmaa.2004.10.029

    [2]

    GUO L J, SUN J P, ZHAO Y H. Existence of positive solutions for nonlinear third-order three-point boundary value problems[J]. Nonlinear Analysis, 2008, 68(10): 3151-3158. doi: 10.1016/j.na.2007.03.008

    [3]

    YAO Q L. The existence and multiplicity of positive solutions for a third-order three-point boundary value pro-blem[J]. Acta Mathematicae Applicatae Sinica, 2003, 19(1): 117-122. doi: 10.1007/s10255-003-0087-1

    [4]

    YAO Q L. Positive solutions of singular third-order three-point boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2009, 354(1): 207-212. doi: 10.1016/j.jmaa.2008.12.057

    [5]

    TORRES F J. Positive solutions for a third-order three-point boundary-value problem[J]. Electronic Journal of Differential Equations, 2013, 2013(147): 1-11.

    [6]

    JANKOWSKI T. Existence of positive solutions to third order differential equations with advanced arguments and nonlocal boundary conditions[J]. Nonlinear Analysis Theory Methods and Applications, 2012, 75(2): 913-923. doi: 10.1016/j.na.2011.09.025

    [7]

    PALAMIDES A P, STAVRAKAKIS N M. Existence and uniqueness of a positive solution for a third-order three-point boundary-value problem[J]. Electronic Journal of Differential Equations, 2010, 2010(155): 1-12. http://www.ams.org/mathscinet-getitem?mr=2740596

    [8]

    SUN J P, ZHAO J. Multiple positive solutions for a third-order three-point BVP with sign-changing Green's function[J]. Electronic Journal of Differential Equations, 2012, 2012(118): 1-7. http://www.ams.org/mathscinet-getitem?mr=3065778

    [9]

    LI X L, SUN J P, KONG F D. Existence of positive solution for a third-order three-point BVP with sign-changing Green's function[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2013(30): 1-11. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=90330242&site=ehost-live

    [10]

    GAO L J, SUN J P. Positive solutions of a third-order three-point BVP with sign-changing Green's function[J]. Mathematical Problems in Engineering, 2014, 2014: 406815/1-6. http://www.ams.org/mathscinet-getitem?mr=3065778

    [11]

    ZHAO Y H, LI X L. Iteration for a third-order three-point BVP with sign-changing Green's function[J]. Journal of Applied Mathematics, 2014, 2014: 541234/1-6. http://www.ams.org/mathscinet-getitem?mr=3065778

    [12]

    XU Y J, TIAN W W, GAO C H. Existence of positive solutions of discrete third-order three-point BVP with sign-changing Green's function[J]. Advances in Difference Equations, 2019, 2019: 206/1-19. http://www.researchgate.net/publication/333432465_Existence_of_positive_solutions_of_discrete_third-order_three-point_BVP_with_sign-changing_Green's_function

    [13]

    WANG J, GAO C H. Positive solutions of discrete third-order boundary value problems with sign-changing Green's function[J]. Advances in Difference Equations, 2015, 2015: 56/1-10.

    [14]

    HAI D D. Existence of positive solutions for periodic boundary value problem with sign-changing Green's function[J]. Positivity, 2018, 22(5): 1269-1279. doi: 10.1007/s11117-018-0573-6

    [15]

    ELSANOSI M E M. Positive solutions of nonlinear neumann boundary value problems with sign-changing Green's function[J]. Kyungpook Mathematical Journal, 2019, 59(1): 65-71. http://www.researchgate.net/publication/332321002_Positive_Solutions_of_Nonlinear_Neumann_Boundary_Value_Problems_with_Sign-Changing_Green's_Function

    [16] 达举霞, 霍梅, 韩晓玲. 带变号格林函数的四阶三点边值问题的多个正解的存在性[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 109-113. http://journal-n.scnu.edu.cn/article/id/3845

    DA J X, HUO M, HAN X L. Existence of multiple positive solutions for a fourth-order three-point BVP with sign-changing Green's function[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(3): 109-113. http://journal-n.scnu.edu.cn/article/id/3845

    [17]

    DJOURDEM H, BENAICHA S, BOUTERAA N. Two positive solutions for a fourth-order three-point BVP with sign-changing Green's function[J]. Communications in Advanced Mathematical Sciences, 2019, 2(1): 60-68. http://www.ams.org/mathscinet-getitem?mr=3065778

    [18] 郭大钧. 非线性泛函分析[M]. 济南: 山东科学技术出版社, 2002.
    [19] 程其襄. 实变函数与泛函分析基础[M]. 北京: 高等教育出版社, 1983.
  • 期刊类型引用(1)

    1. 武晨. 一类非线性微分方程三阶三点边值问题三个正解的存在性. 淮北师范大学学报(自然科学版). 2022(03): 7-10 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  533
  • HTML全文浏览量:  203
  • PDF下载量:  49
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-08-01
  • 网络出版日期:  2021-04-28
  • 刊出日期:  2021-04-24

目录

/

返回文章
返回