The Existence of Three Symmetric Positive Solutions to A Fourth-Order Two-Point Boundary Value Problem
-
摘要: 应用广义的Leggett-Williams不动点定理,研究了四阶两点边值问题 u(4)(t)=f(u(t)) (t∈[0,1]),u(0)=u(1)=0,u″(0)=u″(1)=0 正解的存在性, 其中
f:R→[0,+∞) 连续. 在f满足适当的增长条件下, 得到该问题至少存在3个对称正解.Abstract: Applying the generalized Leggett-Williams fixed-point theorem, the existence of positive solutions to the fourth-order boundary value problem is studied: u(4)(t)=f(u(t)) (t∈[0,1]),u(0)=u(1)=0,u″(0)=u″(1)=0, where f:R→[0,+∞) is continuous. Under some conditions on f, there exist at least three symmetric positive solutions. -
在弹性力学和工程物理学中,四阶常微分方程边值问题用于刻画弹性梁的平衡状态. 目前, 关于四阶两点边值问题与四阶多点边值问题的研究已有很多结果. 例如,周韶林等[1]运用不动点理论获得了四阶三点边值问题
u(4)(t)=g(t)f(u(t))(t∈[0,1]),u(0)=u′(0)=u′′(β)=u′′(1)=0 正解的存在性结果, 这里β∈[1/3, 1]为常数, g ∈C([0, 1], [0, +∞));达举霞和韩晓玲[2]运用锥上的不动点定理获得了非线性奇异四阶三点边值问题
u(4)(t)=λa(t)f(t,u(t))(t∈[0,1]),u(0)=u′(η)=u′′(1)=u′′(0)=0 正解的存在性结果, 其中λ >0是正参数, η ∈[1/2, 1);AVERY和HENDERSON[3]运用广义Leggett-Williams不动点定理获得了二阶边值问题
y′′+f(y)=0(0⩽ 对称正解的存在性, 其中f: \mathbb{R}→[0, +∞)连续. 近年来,常微分方程边值问题在理论和应用中起到很大的作用,主要用来描述大量的物理、生物和化学现象及一些结构性变的讨论等,且这些都转化为了某种形式的四阶边值问题的研究[4-15].
在文献[3]的基础上,本文研究四阶两点边值问题
\begin{array}{c} u^{(4)}(t)=f(u(t)) \quad(t \in[0,1]), \\ u(0)=u(1)=0, u^{\prime \prime}(0)=u^{\prime \prime}(1)=0 \end{array} (1) 正解的存在性, 其中f: \mathbb{R}→[0, +∞)连续. 在f满足适当增长条件下, 证明了问题(1)在其边界条件下至少存在3个对称正解.
1. 预备知识
定义 1[3] 设E是一个实的Banach空间,一个非空闭凸集K⊂E是E上的一个锥,如果满足下面2个条件:
(i) 若x ∈K, λ >0, 则λ x ∈K;
(ii) 若x ∈K,-x ∈K, 则x=0.
定义 2[3] 若算子A是连续的且映有界集到列紧集,则称算子A全连续.
定义 3[3] 设E是一个实的Banach空间,并设P是E上的锥,对∀x, y ∈P, t ∈[0, 1],若有
\alpha(t x+(1-t) y) \geqslant t \alpha(x)+(1-t) \alpha(y), 则映射α: P→[0, +∞)是一个凹函数. 相似地,若有
\beta(t x+(1-t) y) \leqslant t \beta(x)+(1-t) \beta(y), 则映射β: P→[0, +∞)是一个凸函数.
设γ、β和θ是P上的非负连续凸函数,α、ψ是P上的非负连续凹函数,则对正数h、a、b、d、c,定义如下凸集:
\begin{array}{c} P(\gamma, c)=\{x \in P: \gamma(x)<c\} ,\\ P(\gamma, \alpha, a, c)=\{x \in P: a \leqslant \alpha(x), \gamma(x) \leqslant c\}, \\ Q(\gamma, \beta, d, c)=\{x \in P: \beta(x) \leqslant d, \gamma(x) \leqslant c\}, \\ P(\gamma, \theta, \alpha, a, b, c)=\{x \in P: a \leqslant \alpha(x), \theta(x) \leqslant b, \gamma(x) \leqslant c\},\\ Q(\gamma, \beta, \psi, h, d, c)=\{x \in P: h \leqslant \psi(x), \beta(x) \leqslant d, \gamma(x) \leqslant c\}. \end{array} 下面给出广义Leggett Williams不动点定理:
定理 1[3] 设锥P⊂E, α和ψ是定义在P上的非负连续凹函数且γ、β和θ是定义在P上的非负连续凸函数, 对正数c和M, 有α(x) ≤β(x)且‖x‖ ≤Mγ(x) (x ∈\overline{P\left( \gamma , c \right)}). 假设A: \overline{P\left( \gamma , c \right)}→\overline{P\left( \gamma , c \right)}是全连续的, 且存在正数h, d, a, b(0 < d < a), 有
(i){x ∈P(γ, θ, α, a, b, c): α (x) >a } ≠Ø 且α(Ax)>a (x ∈P(γ, θ, α, a, b, c));
(ii){x ∈Q(γ, β, ψ, h, d, c): β(x) < d} ≠ Ø 且β(Ax) < d (x ∈Q(γ, β, ψ, h, d, c));
(iii) 当α(Ax)>a,有θ(Ax)> b (x ∈P(γ, α, a, c));
(iv) 当β(Ax) < d,有ψ(Ax) < h (x ∈Q(γ, β, d, c)),
则A至少有3个不动点x1, x2, x3 ∈\overline{P\left( \gamma , c \right)}, 使得
\beta\left(x_{1}\right)<d, a<\alpha\left(x_{2}\right), d<\beta\left(x_{3}\right), \alpha\left(x_{3}\right)<a. 2. 对称正解的存在性
考虑问题
u^{(4)}(t)=h(t) 满足问题(1)条件的格林函数
G(t, s)=\left\{\begin{array}{ll} \frac{1}{6} s(1-t)\left(2 t-t^{2}-s^{2}\right) & (0 \leqslant s \leqslant t \leqslant 1), \\ \frac{1}{6} t(1-s)\left(2 s-s^{2}-t^{2}\right) & (0 \leqslant t \leqslant s \leqslant 1), \end{array}\right. (2) 且格林函数有如下性质
\int_{0}^{1} G(t, s) \mathrm{d} s=\frac{t(1-t)\left(1+t-t^{2}\right)}{24} \quad(0 \leqslant t \leqslant 1), (3) \int_{0}^{1 / r} G\left(\frac{1}{2}, s\right) \mathrm{d} s=\int_{1-1 / r}^{1} G\left(\frac{1}{2}, s\right) \mathrm{d} s=\frac{3 r^{2}-2}{96 r^{4}} \quad(r>2), (4) \int_{1 / r}^{1 / 2} G\left(\frac{1}{2}, s\right) \mathrm{d} s=\int_{1 / 2}^{1-1 / r} G\left(\frac{1}{2}, s\right) \mathrm{d} s=\frac{5 r^{4}-24 r^{2}+16}{768 r^{4}}(r>2), (5) \begin{array}{c} \quad \int_{t_{1}}^{t_{2}} G\left(t_{1}, s\right) \mathrm{d} s+\int_{1-t_{2}}^{1-t_{1}} G\left(t_{1}, s\right) \mathrm{d} s=\frac{1}{12} t_{1}\left[3\left(t_{2}^{2}-t_{1}^{2}\right)+\right. \\ \left.2\left(t_{1}^{3}-t_{2}^{3}\right)+2 t_{1}^{2}\left(t_{1}-t_{2}\right)\right] \quad\left(0<t_{1}<t_{2} \leqslant \frac{1}{2}\right), \end{array} (6) \max\limits _{0 \leqslant r \leqslant 1} \frac{G(1 / 2, r)}{G(t, s)}=\frac{1}{8 t^{3}} \quad\left(0<t \leqslant \frac{1}{2}\right), (7) \min\limits _{0 \leqslant r \leqslant 1} \frac{G(t_1, r)}{G(t_2, s)}=\frac{t_{1}^{3}}{t_{2}^{3}} \quad\left(0<t \leqslant \frac{1}{2}\right). (8) 考虑Banach空间E=C[0, 1], 定义范数‖u‖=\mathop {\max }\limits_{0 \le t \le 1} \left| {u\left( t \right)} \right|, 定义锥P⊂E如下:
\begin{aligned} &P=\{u \in E \mid u(t) \geqslant 0, u(t)=u(1-t), \forall t \in[0,1], \text { 且 } u \text { 是 }\\ &\ \ \ \ \ \ \ \ [0,1] \text { 上凹函数, 当 } 0<t_{3} \leqslant 1 / 2 \text { 时 }, \min \limits_{t \in\left[t_{3}, 1-t_{3}\right]} u(t) \geqslant\\ &\ \ \ \ \ \ \ \ \left.2 t_{3}\|u\|\right\} . \end{aligned} 在此锥P上定义非负连续凹函数α、ψ和非负连续凸函数β、θ、γ,且
\begin{array}{c} \gamma(u)=\max \limits_{t \in\left[0, t_{3}\right] \cup\left[1-t_{3}, 1\right]} u(t)=u\left(t_{3}\right), \\ \psi(u)=\min \limits_{t \in\left[\frac{1}{r}, \frac{r-1}{r}\right]} u(t)=u\left(\frac{1}{r}\right), \\ \beta(u)=\max \limits_{t \in\left[\frac{1}{r} \cdot \frac{r-1}{r}\right]} u(t)=u\left(\frac{1}{2}\right), \\ \alpha(u)=\min \limits_{t \in\left[t_{1}, t_{2}\right] \cup\left[1-t_{2}, 1-t_{1}\right]} u(t)=u\left(t_{1}\right), \\ \theta(u)=\max \limits_{t \in\left[t_{1}, t_{2}\right] \cup\left[1-t_{2}, 1-t_{1}\right]} u(t)=u\left(t_{2}\right), \end{array} 其中,t1、t2和r是非负数且0 < t1 < t2≤1/2, 1/r≤t2.
对∀u∈P,有
\alpha(u)=u\left(t_{1}\right) \leqslant u\left(\frac{1}{2}\right)=\beta(u) , (9) \|u\|=u\left(\frac{1}{2}\right) \leqslant \frac{1}{2 t_{3}} u\left(t_{3}\right)=\frac{1}{2 t_{3}} \gamma(u), (10) 则u∈P是问题(1)在其边界条件下的解当且仅当
u(t)=\int_{0}^{1} G(t, s) f(u(s)) \mathrm{d} s \quad(0 \leqslant t \leqslant 1). 下面给出本文的主要结果.
定理 2 假设a、b和c是非负数且0 < a < b < ct13/t23, 设f满足以下条件:
(i) f\left( \omega \right) < \frac{{384{r^4}}}{{5{r^4} - 24{r^2} + 16}}\left( {a - \frac{{c\left( {3{r^2} - 2} \right)}}{{2{t_3}\left( {1 - {t_3}} \right)\left( {1 + {t_3} - t_3^2} \right)}}} \right)\;\;\;\;\;\left( {\omega \in \left[ {\frac{{8a}}{{{r^3}}}, a} \right]} \right);
(ii) f\left( \omega \right) \ge \frac{{12b}}{{{t_1}\left[ {3\left( {t_2^2 - t_1^2} \right) + 2\left( {t_1^3 - t_2^3} \right) + 2t_1^2\left( {{t_1} - {t_2}} \right)} \right]}}\;\;\;\;\;\left( {\omega \in \left[ {b, \frac{{t_2^3b}}{{t_1^3}}} \right]} \right);
(iii) f\left( \omega \right) \le \frac{{24c}}{{{t_3}\left( {1 - {t_3}} \right)\left( {1 + {t_3} - t_3^2} \right)}}\;\;\;\;\;\left( {\omega \in \left[ {0, \frac{c}{{2{t_3}}}} \right]} \right),
则四阶两点边值问题(1)有3个对称正解u1、u2、u3, 使得
\begin{array}{c} \mathop {\max }\limits_{t \in \left[ {0,{t_3}} \right] \cup \left[ {1 - {t_3},1} \right]} {u_i}(t) \le c\quad (i = 1,2,3),\\ \mathop {\min }\limits_{t \in \left[ {{t_1},{t_2}} \right] \cup \left[ {1 - {t_2},1 - {t_1}} \right]} {u_1}(t) > b,\mathop {\max }\limits_{t \in \left[ {\frac{1}{r},\frac{{r - 1}}{r}} \right]} {u_2}(t) < a,\\ \mathop {\min }\limits_{t \in \left[ {{t_1},{t_2}} \right] \cup \left[ {1 - {t_2},1 - {t_1}} \right]} {u_3}(t) < b,\mathop {\max }\limits_{t \in \left[ {\frac{1}{r},\frac{{r - 1}}{r}} \right]} {u_3}(t) > a. \end{array} 证明 定义全连续算子A为:
A u(t)=\int_{0}^{1} G(t, s) f(u(s)) \mathrm{d} s. 若u ∈P, 由G(t, s)性质可知, Au(t)≥0且(Au)″(t)≤0 (0≤t≤1), Au(t3)≥2t3Au(1/2),且
A u(t)=A u(t-1) \quad(0 \leqslant t \leqslant 1), 从而可得Au ∈P, 即A: P→P. 因此, 对∀u ∈P, 由式(9)及式(10), 有‖u‖≤\frac{1}{{2{t_3}}}\gamma \left( u \right).
设u∈\overline{P\left( \gamma , c \right)}, ‖u‖≤ \frac{1}{{2{t_3}}}\gamma \left( u \right) \le \frac{c}{{2{t_3}}},则由式(3)可得
\begin{array}{l} \gamma(A u)=\max \limits_{t \in\left[0, t_{3}\right] \cup\left[1-t_{3}, 1\right]} \int_{0}^{1} G(t, s) f(u(s)) \mathrm{d} s= \\ \ \ \ \ \ \ \ \int_{0}^{1} G\left(t_{3}, s\right) f(u(s)) \mathrm{d} s \leqslant \\ \ \ \ \ \ \ \ \frac{24 c}{t_{3}\left(1-t_{3}\right)\left(1+t_{3}-t_{3}^{2}\right)} \int_{0}^{1} G\left(t_{3}, s\right) \mathrm{d} s=c. \end{array} 从而, A: \overline{P\left( \gamma , c \right)}→\overline{P\left( \gamma , c \right)},且
\begin{array}{l} \left\{u \in P\left(\gamma, \theta, \alpha, b, \frac{t_{2}^{3} b}{t_{1}^{3}}\right): \alpha(u)>b\right\} \neq \varnothing \\ \left\{u \in Q\left(\gamma, \beta, \psi, \frac{8 a}{r^{3}}, a, c\right): \beta(u)<a\right\} \neq \varnothing \end{array} 由定理1可得:
(i) 设u ∈Q(γ, β, a, c), 有ψ(Au) < \frac{{8a}}{{{r^3}}}, 则β(Au) < a. 推导如下:
\begin{array}{l} \beta(A u)=\max \limits_{t \in\left[\frac{1}{r}, \frac{r-1}{r}\right]} \int_{0}^{1} G(t, s) f(u(s)) \mathrm{d} s= \\ \ \ \ \ \ \ \ \ \int_{0}^{1} G\left(\frac{1}{2}, s\right) f(u(s)) \mathrm{d} s= \\ \ \ \ \ \ \ \ \ \int_{0}^{1} \frac{G\left(\frac{1}{2}, s\right)}{G\left(\frac{1}{r}, s\right)} G\left(\frac{1}{r}, s\right) f(u(s)) \mathrm{d} s \leqslant \\ \ \ \ \ \ \ \ \ \frac{r^{3}}{8} \int_{0}^{1} G\left(\frac{1}{r}, s\right) f(u(s)) \mathrm{d} s=\frac{r^{3}}{8} \psi(A u)<a . \end{array} (ii) 设u ∈Q(γ, β, ψ, 8a/r3, a, c), 则β(Au) < a. 推导如下:
\begin{array}{l} \beta(A u)=\max \limits_{t \in\left[\frac{1}{r}, \frac{r-1}{r}\right]} \int_{0}^{1} G(t, s) f(u(s)) \mathrm{d} s= \\ \ \ \ \ \int_{0}^{1} G\left(\frac{1}{2}, s\right) f(u(s)) \mathrm{d} s= \\ \ \ \ \ 2 \int_{0}^{1 / r} G\left(\frac{1}{2}, s\right) f(u(s)) \mathrm{d} s+2 \int_{1 / r}^{1 / 2} G\left(\frac{1}{2}, s\right) f(u(s)) \mathrm{d} s< \\ \ \ \ \ \frac{c\left(3 r^{2}-2\right)}{2 t_{3}\left(1-t_{3}\right)\left(1+t_{3}-t_{3}^{2}\right) r^{4}}+\frac{5 r^{4}-24 r^{2}+16}{384 r^{4}} \times \frac{384 r^{4}}{5 r^{4}-24 r^{2}+16} \times \\ \ \ \ \ \left(a-\frac{c\left(3 r^{2}-2\right)}{2 t_{3}\left(1-t_{3}\right)\left(1+t_{3}-t_{3}^{2}\right) r^{4}}\right)=a. \end{array} (iii) 设u ∈P(γ, α, b, c), 有θ(Au)>t23b/t13, 则α(Au)>b. 推导如下:
\begin{array}{l} \alpha(A u)=\min \limits_{t \in\left[t_{1}, t_{2}\right] \cup\left[1-t_{2}, 1-t_{1}\right]} \int_{0}^{1} G(t, s) f(u(s)) \mathrm{d} s= \\ \ \ \ \ \int_{0}^{1} G\left(t_{1}, s\right) f(u(s)) \mathrm{d} s= \\ \ \ \ \ \int_{0}^{1} \frac{G\left(t_{1}, s\right)}{G\left(t_{2}, s\right)} G\left(t_{2}, s\right) f(u(s)) \mathrm{d} s \geqslant \\ \ \ \ \ \frac{t_{1}^{3}}{t_{2}^{3}} \int_{0}^{1} G\left(t_{2}, s\right) f(u(s)) \mathrm{d} s=\frac{t_{1}^{3}}{t_{2}^{3}} \theta(A u)>b. \end{array} (iv) 设u ∈P(γ, θ, α, b, t23b/t13, c), 则α(Au)>b. 推导如下
\begin{array}{l} \alpha(A u)=\min \limits_{t \in\left[t_{1}, t_{2}\right] \cup\left[1-t_{2}, 1-t_{1}\right]} \int_{0}^{1} G(t, s) f(u(s)) \mathrm{d} s= \\ \ \ \ \ \ \ \ \ \int_{0}^{1} G\left(t_{1}, s\right) f(u(s)) \mathrm{d} s>\int_{t_{1}}^{t_{2}} G\left(t_{1}, s\right) f(u(s)) \mathrm{d} s+ \\ \ \ \ \ \ \ \ \ \int_{1-t_{2}}^{1-t_{1}} G\left(t_{1}, s\right) f(u(s)) \mathrm{d} s \geqslant \\ \ \ \ \ \ \ \ \ \frac{12 b}{t_{1}\left[3\left(t_{2}^{2}-t_{1}^{2}\right)+2\left(t_{1}^{3}-t_{2}^{3}\right)+2 t_{1}^{2}\left(t_{1}-t_{2}\right)\right]} \times \\ \ \ \ \ \ \ \ \ {\left[\int_{t_{1}}^{t_{2}} G\left(t_{1}, s\right) \mathrm{d} s+\int_{1-t_{2}}^{1-t_{1}} G\left(t_{2}, s\right) \mathrm{d} s\right]=b.} \end{array} 综上, 由广义Leggett-Williams不动点定理[16]可得四阶两点边值问题(1)有3个正解u1, u2, u3 ∈\overline{P\left( \gamma , c \right)}, 使得
\alpha ({u_1}) > b,\beta ({u_2}) < a,\alpha ({u_3}) < b,\beta ({u_3}) > a. -
[1] 周韶林, 吴红萍, 韩晓玲. 一类四阶三点边值问题正解的存在性[J]. 四川大学学报(自然科学版), 2014, 51(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201401003.htm ZHOU S L, WU H P, HAN X L. Existence of positive solutions of the fourth-order three-point boundary value problems[J]. Journal of Sichuan University(Natural Science Edition), 2014, 51(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201401003.htm
[2] 达举霞, 韩晓玲. 奇异四阶三点边值问题正解的存在性[J]. 四川大学学报(自然科学版), 2017, 54(3): 441-447. doi: 10.3969/j.issn.0490-6756.2017.03.001 DA J X, HAN X L. Positive solutions of singular fourth-order three-point boundary value problem[J]. Journal of Sichuan University(Natural Science Edition), 2017, 54(3): 441-447. doi: 10.3969/j.issn.0490-6756.2017.03.001
[3] AVERY R I, HENDERSON J. Three symmetric positive solutions for a second-order boundary value problem[J]. Applied Mathematics Letters, 2000, 13: 1-7. http://www.sciencedirect.com/science/article/pii/S0893965999001779
[4] 达佳丽, 韩晓玲. 三阶三点边值问题3个正解的存在性[J]. 华南师范大学学报(自然科学版), 2015, 47(3): 148-150. http://journal-n.scnu.edu.cn/article/id/3437 DA J L, HAN X L. The existence of three positive solutions of third-order three-point boundary value problem[J]. Journal of South China Normal University(Natural Science Edition), 2015, 47(3): 148-150. http://journal-n.scnu.edu.cn/article/id/3437
[5] 陈剑, 曾泰山. 时间分数阶次扩散方程的多层扩充算法[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 106-110. doi: 10.6054/j.jscnun.2020051 CHEN J, ZENG T S. Multi-layer extended algorithm for time fractional diffusion equation[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(3): 106-110. doi: 10.6054/j.jscnun.2020051
[6] 达举霞, 霍梅, 韩晓玲. 带变号格林函数的四阶三点边值问题的多个正解的存在性[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 109-113. http://journal-n.scnu.edu.cn/article/id/3845 DA J X, HUO M, HAN X L. The existence of multiple positive solutions to fourth-order three-point boundary value problems with changing sign Green's founction[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(3): 109-113. http://journal-n.scnu.edu.cn/article/id/3845
[7] LI Y K, WANG L Y. Multiple positives solutions of nonlinear third-order boundary value problems with integral boundary conditions on times scales[J]. Advances in Difference Equations, 2015, 90: 1-8. doi: 10.1186/s13662-015-0442-6
[8] PALAMIDES A P, GEORGE S. Positive solutions to a singular third-order three-point boundary value problem with an indefinitely signed Green's function[J]. Nonlinear Analysis, 2008, 68: 2014-2019.
[9] ZHOU Y L, ZHANG X M. Existence of positive solutoins of fourth-order ompulsive differential equations with integral boundary condition[J]. Nonlinear Analysis, 2015, 2: 1-6.
[10] WANG Y. Existence of multiple positive solutions for one-dimensional p-Laplacian[J]. Journal of Mathematical Analysis and Applications, 2006, 315: 144-153. doi: 10.1016/j.jmaa.2005.09.085
[11] LIU Y J. Picard boundary value problems of second order p-Laplacian differential equations[J]. Chinese Quarterly Journal of Mathematics, 2011, 26(1): 77-84. http://www.cqvip.com/QK/97306X/201101/37879789.html
[12] WU H Y, ZHANG J H. Positive solutions of higher-order four-point boundary value problem with Laplacian operator[J]. Journal of Computational and Applied Mathema-tics, 2010, 233(11): 2757-2766. doi: 10.1016/j.cam.2009.06.040
[13] YANG X J, KIN Y, LO K. Periodic solutions for a gene-ralized p-Laplacian equation[J]. Applied Mathematics Letter, 2012, 25(3): 586-589. doi: 10.1016/j.aml.2011.09.064
[14] AVERY R I, PETERSON A. Three positive fixed points of nonlinear operators on ordered Banach spaces[J]. Computers#38;Mathematics with Applications, 2001, 42(3/4/5): 313-322. http://www.ams.org/mathscinet-getitem?mr=542951
[15] ZHAO J, MIAO C, GE W, et al. Multiple symmetric positive solutions to a new kind four point boundary value problem[J]. Nonlinear Analysis, 2009, 71: 9-18. http://www.ams.org/mathscinet-getitem?mr=2518007
[16] AVERY R I. A generalization of the Leggett-Williams fixed-point theorem[J]. Mathematical Science Research Hot-Line, 1999, 3(7): 9-14. http://www.ams.org/mathscinet-getitem?mr=1702612
-
期刊类型引用(1)
1. 李宪,达举霞,章欢. 四阶两点边值问题n个对称正解的存在性. 华南师范大学学报(自然科学版). 2024(01): 123-127 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 452
- HTML全文浏览量: 125
- PDF下载量: 55
- 被引次数: 1