卢侠, 陈伟鑫. 钛酸锂负极的相分离机制[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 1-16. doi: 10.6054/j.jscnun.2020054
引用本文: 卢侠, 陈伟鑫. 钛酸锂负极的相分离机制[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 1-16. doi: 10.6054/j.jscnun.2020054
LU Xia, CHEN Weixin. Phase Separation in Li4Ti5O12 Anode for Li-Ion Batteries[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 1-16. doi: 10.6054/j.jscnun.2020054
Citation: LU Xia, CHEN Weixin. Phase Separation in Li4Ti5O12 Anode for Li-Ion Batteries[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 1-16. doi: 10.6054/j.jscnun.2020054

钛酸锂负极的相分离机制

Phase Separation in Li4Ti5O12 Anode for Li-Ion Batteries

  • 摘要: 尖晶石钛酸锂(Li4Ti5O12)作为锂离子电池负极材料具有长寿命、高稳定性的特点,是高功率锂离子电池的理想选择,对发展电动汽车以及智能电网有重要意义.结合球差校正透射电镜(STEM)、电子能量损失谱(EELS)和理论计算,在原子尺度观测到了尖晶石钛酸锂(Li4Ti5O12)的结构,实现了对脱嵌锂过程的直接观测与表征.在锂化过程中,出现一个近似理想的异质界面(Li4Ti5O12/Li7Ti5O12),界面两侧Ti离子呈不同价态分布(Ti3+/Ti4+).而随着锂离子在材料中的嵌入和脱出,TiO6八面体里面的Ti—O键会产生相应的收缩或拉伸(“呼吸”模型),而这种键长的变化直接导致材料在不同区域的电子电导率产生质的变化(由绝缘体的Li4Ti5O12向近似导体的Li7Ti5O12转变),而基本不影响材料的离子电导率,这是材料具有优良倍率性能的重要条件.借助原子分辨的EELS分析研究锂化以后的Li7Ti5O12表面, 观测到材料表面的Ti3+自发氧化成Ti4+,这个电荷转移过程可以诱导电极材料界面上的副反应,可以合理解释钛酸锂电池产气的原因.进一步将钛酸锂电池用于储钠研究发现了晶格中存在Li4Ti5O12/Li7Ti5O12/Na6LiTi5O12三相分离机制,深化了对电极材料过程动力学的认识.这些重要研究结果为钛酸锂的工业化应用提供了重要的结构基础与理论指导.

     

    Abstract: Li4Ti5O12 spinel has been regarded as one of the ideal anode materials for Li ion batteries and is a good candidate for developing high performance electric automobiles and smart grids for its characteristics of the long electrochemical cycle-life, high-structural stability and power density. Atomic-scale visualization of Li4Ti5O12 spinel upon lithiation is realized using spherical aberration corrected transmission electron microscope (STEM), electron energy loss spectroscopy (EELS) and first-principles calculations. Upon lithiation, the Li4Ti5O12 spinel transforms into the rock-salt Li7Ti5O12 phase by developing an almost ideal hetero-interface and the Ti ions demonstrate different chemical states on the different sides of the interface. Further observation indicates that the elongation and shrinkage of Ti—O bonds in TiO6 octahedra (breathing model) results in the fundamental changes of electronic conductivity in lithiated Li4Ti5O12, where the insulating Li4Ti5O12 is transformed into a quasi-conducting Li7Ti5O12 phase. But these changes show limited influence on ionic conductivity. Using atomic-scale EELS analysis, a spontaneous oxidization process of Ti3+ to Ti4+ is revealed on the surface of Li7Ti5O12 phase. This spontaneously surficial charge transfer reaction is revealed to be strongly related with the package swelling issue of Li4Ti5O12 battery during cycling. Moreover, a three-phase separation, including the Li4Ti5O12, Li7Ti5O12 and Na6LiTi5O12 phases, is found during Na insertion when Li4Ti5O12 is employed as anode for sodium ion battery. All these important findings provide a rewarding avenue for the structural design and optimization of battery materials and lay a solid foundation for industrial application of Li4Ti5O12 anode.

     

/

返回文章
返回