一类非线性分数阶微分方程耦合系统正解的存在性

薛益民*, 彭钟琪
(徐州工程学院数学与物理科学学院，徐州 221018)

摘要: 利用Guo-Krasnoselskii不动点定理、Schauder不动点定理和格林函数的性质,研究一类非线性 Riemann-Liouville 型分数阶微分方程耦合系统正解的存在性,得到了该耦合系统正解的存在性定理,并举例说明了定理的有效性。

关键词:分数阶微分方程;耦合系统;边值问题;不动点定理

On the Existence of Positive Solutions to the Coupled System of a Class of Nonlinear Fractional Differential Equations

XUE Yimin*, PENG Zhongqi
(School of Mathematics and Physical Science, Xuzhou University of Technology, Xuzhou 221018, China)

Abstract: The Guo-Krasnoselskii’s fixed point theorem, the Schauder fixed point theorem and the properties of the associated Green’s function are used to study the existence of positive solutions to the coupled system of a class of nonlinear Riemann–Liouville fractional differential equations. Two theorems about the existence of positive solutions are obtained, and two examples are given to illustrate the advantages of the theorems.

Keywords: fractional differential equations; coupled system; boundary value problem; fixed point theorem

随着非线性问题研究的深入，学者们建立了比整数阶微分方程模型更为精细的分数阶微分方程模型，以更好地解决复杂的问题，而其中的很多问题可以化为非线性分数阶微分方程边值问题。关于非线性分数阶微分方程边值问题正解的研究也已有许多重要成果[1-10]。

Bai 和 Li[10]利用锥上的不动点定理，得到了非线性分数阶边值问题

\[
\begin{aligned}
D_α^α u(t) + f(t,v(t)) &= 0 \quad (0 < t < 1), \\
u(0) &= D_α^α u(0) = 0, \\
u(1) &= 0
\end{aligned}
\]

正解的存在性和多重性结果，其中，\(D_α^α\) \((1 < α ≤ 2)\) 表示 Riemann–Liouville 分数阶导数，\(f \in C([0, 1] \times [0, \infty], [0, \infty])\)。

受文献[10]的启发, 本文利用 Guo-Krasnoselskii不动点定理、Schauder不动点定理和格林函数的性质，得到如下的非线性 Riemann–Liouville 型分数阶微分方程耦合系统边值问题

\[
\begin{aligned}
D_α^α u(t) + f(t,v(t)) &= 0 \quad (0 < t < 1), \\
D_β^β v(t) + g(t,u(t)) &= 0 \quad (0 < t < 1), \\
u(0) &= D_α^α u(0) = D_β^β v(1) = 0, \\
u(1) &= D_α^α u(0) = D_β^β v(1) = 0
\end{aligned}
\]

正解的存在性的充分条件，其中，\(2 < α, β, 1 < γ ≤ 2, 1 + γ ≤ 2\)。

1 预备知识

定义 1[11] 函数 \(f: \mathbb{R} \rightarrow \mathbb{R}\) 的 \(α > 0\) 阶 Riemann–Liouville 积分为

\[
I^α f(t) = \frac{1}{\Gamma(α)} \int_0^t (t-s)^{α-1} f(s) \, ds,
\]

其中，等式右边在 \(\mathbb{R}^+\) 上逐点定义。

定义 2[11] 函数 \(f: \mathbb{R} \rightarrow \mathbb{R}\) 的 \(α > 0\) 阶 Riemann–
Liouville导数为
\[D^n f(t) = \frac{1}{\Gamma(n-\alpha)} \left(\frac{d^n}{dt^n} \right) \int_0^t \frac{f(s)}{(t-s)^{\alpha+n-1}} ds, \]
其中，\(n = \lfloor \alpha \rfloor + 1 \)，\(\lfloor \alpha \rfloor \)表示实数\(\alpha \)的整数部分，等式右边在\(\mathbb{R}^+ \)上逐点定义。

引理1 [11] 若\(\alpha, \beta > 0, f(x) \in L(0,1) \)，则：
(i) \(D^\beta f(t) = (D^\beta f)(t) \) (\(\alpha > \beta \))；
(ii) \(D^\alpha f(t) = f(t) \)；
(iii) \(\left(\frac{d^n}{dt^n} \right) \int_0^t \frac{f(s)}{(t-s)^{\alpha+n-1}} ds \)；
(iv) \(\left(\frac{d^n}{dt^n} \right) \int_0^t \frac{f(s)}{(t-s)^{\alpha+n-1}} ds \)．

下面给出本文定理证明时所需要的引理。

引理2 [12] (Guo-Krasnoselskii不动点定理)假设
P在Banach空间\(E \)中是一个锥，\(\Omega_1 \)和\(\Omega_2 \)是\(E \)的有界开子集，且\(0 \in \Omega_1 \)，\(\Omega_2 \subset \Omega_1 \)。如果\(A : P \cap (\bar{\Omega}_2 \setminus \Omega_1) \to P \)是一个全连续算子，且下列条件之一成立：
(i) \(\|Ax\| \leq \|x\| \) (\(x \in P \cap \partial \Omega_1 \))且\(\|Ax\| \geq \|x\| \) (\(x \in P \cap \partial \Omega_2 \))；
(ii) \(\|Ax\| \geq \|x\| \) (\(x \in P \cap \partial \Omega_1 \))且\(\|Ax\| \leq \|x\| \) (\(x \in P \cap \partial \Omega_2 \))；
则\(A \)在\(P \cap (\bar{\Omega}_2 \setminus \Omega_1) \)上有一个不动点。

引理3 [13] (Schauder不动点定理)假设\(U \)是Banach空间\(X \)的非空有界凸子集，\(T \)是\(U \)到其自身的全连续映射，则至少存在一个\(x \in U \)使得\(Tx = x \)。

引理4 [14] \(\forall \gamma(t) \in C([0,1], [0,1]), 2\alpha \leq 3, 1 < \gamma \leq 2, 1 + \gamma \leq \alpha, \)函数阶数微分方程边值问题
\[
\begin{cases}
D^n u(t) + \gamma(t)u(t) = 0, 0 < t < 1, \\
u(0) = u'(0) = u''(0) = 0
\end{cases}
\]
有唯一解
\[
\begin{aligned}
G_{\alpha, \gamma}(t,s) & = \frac{\Gamma(\alpha)}{(1-s)^{\alpha-1}} \int_0^s \left(\frac{1}{(t-s)^{\alpha-1}} \right) ds, \\
G_{\alpha, \gamma}(t,s) & = \frac{\Gamma(\alpha)}{(1-s)^{\alpha-1}} \int_s^1 \left(\frac{1}{(t-s)^{\alpha-1}} \right) ds.
\end{aligned}
\]

类似可得
\[
\begin{aligned}
G_{\beta, \gamma}(t,s) & = \frac{\Gamma(\beta)}{(1-s)^{\beta-1}} \int_0^s \left(\frac{1}{(t-s)^{\beta-1}} \right) ds, \\
G_{\beta, \gamma}(t,s) & = \frac{\Gamma(\beta)}{(1-s)^{\beta-1}} \int_s^1 \left(\frac{1}{(t-s)^{\beta-1}} \right) ds.
\end{aligned}
\]

引理5 [15] 假设\(G(t,s) = (G_{\alpha, \gamma}(t,s), G_{\beta, \gamma}(t,s)) \)，则\(G(t,s) \)满足：
(i) \(\forall t, s \in [0,1], \)有\(G(t,s) \in C([0,1] \times [0,1]) \)；
(ii) \(\forall t, s \in [0,1], \)有\(G(t,s) \geq 0, \)且\(\forall t, s \in (0,1), \)有\(G(t,s) > 0 \)；
(iii) \(\forall t, s \in [0,1], \)有\(\max_{t \in [0,1]} G(t,s) = G(t,1) ; \)
(iv) \(\forall s \in [0,1], \)有
\[
\min_{t \in (0,1]} G(t,s) \geq \mu, \max_{t \in [0,1]} G(t,s) = \mu G(t,1) ,
\]
其中\(\mu = \min \{ (1/2)^{\alpha-1}, (1/2)^{\beta-1} \} \)。

2. 主要结论

令\(X = \{ u(t) \mid u(t) \in C([0,1], [0,1]) \} \)，\(\forall u \in X \)；
定义范数
\[
\|u\| = \max_{t \in [0,1]} |u(t)| ; \]
是Banach空间。令\(Y = \{ v(t) \mid v(t) \in C([0,1], [0,1]) \} \)，\(\forall v \in Y \)；
定义范数
\[
\|v\| = \max_{t \in [0,1]} |v(t)| ; \]
是Banach空间。定义算子
\[
T : X \times Y \to X \times Y, \]
其中，\(\forall (u,v) \in X \times Y \)；
定义算子
\[
T(u,v)(t) = (T_1 u(t), T_2 v(t)) = (T_1 u(t), T_2 v(t)) = \left(\int_0^1 G_{\alpha, \gamma}(t,s) f(s,v(s)) ds, \int_0^1 G_{\beta, \gamma}(t,s) g(s,u(s)) ds \right).
\]

由引理4知T的不动点即为耦合系统(1)的解。

引理6 [16] 假设\(f, g \in C([0,1] \times [0,1], [0,1]) \)，
则算子\(T : U \to U \)为全连续的。

为叙述简洁，记
\[
L = \min \left\{ L_1 = \left(\int_0^1 G_{\alpha, \gamma}(1,s) ds \right)^{-1}, L_2 = \left(\int_0^1 G_{\beta, \gamma}(1,s) ds \right)^{-1} \right\},
\]
\[
\Delta = \max \left\{ \Delta_1 = \left(\int_{1/2}^1 (1/2)^{\alpha-1} G_{\alpha, \gamma}(1,s) ds \right)^{-1}, \right\},
\]
其中，\(\mu_\alpha \)和\(\mu_\beta \)由引理5的(iv)给出。

定理1 假设\(f, g \in C([0,1] \times [0,1], [0,1]) \)，
若存在常数\(R \)和\(\gamma > 0 \) (\(i = 1, 2 \))，使得不等式成立：
\[
(\text{H}_1) (f(t,v) \leq M_1 R_1, ((t,v) \in [0,1] \times [0,1])) ;
(\text{H}_2) (f(t,v) \geq N_1 R_1, ((t,v) \in [0,1] \times [0,1]));
(\text{H}_3) (g(t,u) \leq M_2 R_2, ((t,u) \in [0,1] \times [0,1]));
(\text{H}_4) (g(t,u) \geq N_2 R_2, ((t,u) \in [0,1] \times [0,1]));
(\text{H}_5) \exists 0 < M_1, M_2 \leq L, N_1, N_2 \geq \Delta,
\]
则耦合系统(1)至少有一个正解。

证明 由引理6可知算子\(T : U \to U \)是全连续的。令

吗
\[\Omega_R = \left\{ (u(t), v(t)) \mid (u(t), v(t)) \in \mathbb{R} \times \mathbb{R}, \right. \\
\left. \| (u(t), v(t)) \| < R = R_1 + R_2, t \in [0, 1] \right\}. \]

对 \((u, v) \in U \cup \partial \Omega_R\)，有
\[\| (u, v) \| = R. \quad \forall t \in [0, 1], \]
由 \((H_1), (H_2)\) 和引理 5 的(ii), (iii), 有
\[T_\nu v(t) = \int_0^1 G_{\nu}^\alpha(t, s) \phi(s, v(s)) \, ds \leq M_1 R_1 \int_0^1 G_{\nu}^\alpha(1, s) \, ds \leq L_1 R_1 \int_0^1 G_{\nu}^\alpha(1, s) \, ds = R_1, \]
即
\[\| T_\nu v(t) \| \leq R_1. \quad (3) \]

由 \((H_3), (H_4)\) 和引理 5 的(ii), (iii), 有
\[T_\beta u(t) = \int_0^1 G_{\beta}^\alpha(t, s) f(s, u(s)) \, ds \leq M_2 R_2 \int_0^1 G_{\beta}^\alpha(1, s) \, ds \leq L_2 R_2 \int_0^1 G_{\beta}^\alpha(1, s) \, ds = R_2, \]
即
\[\| T_\beta u(t) \| \leq R_2. \quad (4) \]

由式(3), (4)可得
\[\| T(u, v) \| = \| T_\nu v(t) \| + \| T_\beta u(t) \| \leq R_1 + R_2 = R = \| (u, v) \|, \]
即
\[\| T(u, v) \| \leq \| (u, v) \| \quad \forall (u, v) \in \Omega_R. \]

由 \[\Omega_R = \{(u, v) \mid \Omega_R(t), (u(t), v(t)) \in \mathbb{R} \times \mathbb{R}, \]
\[\| (u(t), v(t)) \| < r = r_1 + r_2, t \in [0, 1] \}. \]
对 \((u, v) \in U \cup \partial \Omega_R\)，有
\[\| (u, v) \| = r. \quad \forall t \in [0, 1], \]
由 \((H_1), (H_2)\) 和引理 5 的(ii), (iv), 有
\[T_\nu v(t) = \int_0^1 G_{\nu}^\alpha(t, s) \phi(s, v(s)) \, ds \geq N_1 r_1 \int_0^1 G_{\nu}^\alpha(t, s) \, ds \leq N_1 r_1 \int_0^{1/2} G_{\nu}^\alpha(t, s) \, ds + \int_{1/2}^1 G_{\nu}^\alpha(t, s) \, ds \geq 0, \]
即
\[\| T_\nu v(t) \| \geq r_1. \]

由式(5), (6)可得
\[\| T(u, v) \| = \| T_\nu v(t) \| + \| T_\beta u(t) \| \geq r_1 + r_2 = \| (u, v) \|, \]
即
\[\| T(u, v) \| \geq \| (u, v) \| \quad \forall (u, v) \in U \cap \partial \Omega_R. \]

由引理 2，若存在 \(T \) 至少有一个不动点 \((u, v) \in U \cap \Omega_R\)，则耦合系统(1)至少有一个正解。证毕。

定理 2 假设 \(f, g \in C([0, 1] \times [0, \infty), [0, \infty))\)，若存在常数 \(a, b > 0\) (i = 1, 2)，使得以下不等式成立：
\[(1_f(t, v) \leq a_1 + b_1 v^{\rho_1}, \forall (t, v) \in [0, 1] \times [0, \infty), \]
\[(1_g(t, u) \leq a_2 + b_2 u^{\rho_2}, \forall (t, u) \in [0, 1] \times [0, \infty), \]
\[\rho_1, \rho_2 \in (0, 1), \]
则耦合系统(1)至少有一个正解。

证明 取定常数 \(r^*\)，使得
\[r^* = \max \{|4a_1 \Lambda_1, (4b_1 \Lambda_1)^{1/2}, 4a_2 \Lambda_2, (4b_2 \Lambda_2)^{1/2}|, \]
\[\Omega_1 = \{(u, v) \mid \Omega_R(t), (u(t), v(t)) \in \mathbb{R} \times \mathbb{R}, \]
\[(u(t), v(t)) \| < r = r_1 + r_2, t \in [0, 1] \}. \]
则 \(\Omega_1\) 是 Banach 空间 \(\mathbb{R} \times \mathbb{R}\) 的非空有界闭凸子集，下面证明 \(T_\Omega : \Omega_1 \to \Omega_1\)。\(\forall (u, v) \in \Omega_1\)，由式(2), (7), (8)和(1), 有
\[T_\nu v(t) = \int_0^1 G_{\nu}^\alpha(t, s) \phi(s, v(s)) \, ds \leq \int_0^1 G_{\nu}^\alpha(1, s) (a_1 + b_1 v^{\rho_1}) \, ds \leq (a_1 + b_1 r^{\rho_1}) \Lambda_1 \leq r^* /4 + r^*/4 = r^*/2, \]
即
\[\| T_\nu v(t) \| \leq r^*/2. \quad (9) \]

由式(2), (7), (8)和(1), 有
\[T_\beta u(t) = \int_0^1 G_{\beta}^\alpha(t, s) f(s, u(s)) \, ds \leq \int_0^1 G_{\beta}^\alpha(1, s) (a_2 + b_2 v^{\rho_2}) \, ds \leq (a_2 + b_2 r^{\rho_2}) \Lambda_2 \leq r^*/4 + r^*/4 = r^*/2, \]
即
\[\| T_\beta u(t) \| \leq r^*/2. \quad (10) \]

由式(9), (10), 有
\[T_\nu v(t) = \| T_\nu v(t) \| + \| T_\beta u(t) \| \leq r^* \]
\[\forall (u, v) \in \Omega_1, \]
即 \(T_\Omega : \Omega_1 \to \Omega_1\)。

由引理 6，知算子 \(T_\Omega : \Omega_1 \to \Omega_1\) 是全连续的。由引理 3，耦合系统(1)至少有一个正解。证毕。
3 应用举例

本节给出 2 个例子以验证定理的有效性。

例 1 考虑如下耦合系统边值问题

\[
\begin{align*}
D^3 u(t) &=
\frac{t}{3} + \frac{1}{2} t \ln(1 + v(t)) = 0 \quad (0 < t < 1), \\
D^3 v(t) &=
\frac{t}{3} + \frac{1}{2} t \ln(1 + v(t)) = 0 \quad (0 < t < 1), \\
u(0) &= D^3 u(0) = D^3 u(1) = 0, \\
v(0) &= D^3 v(0) = D^3 v(1) = 0,
\end{align*}
\]

其中, \(2 < \alpha = 5/2, \beta = 7/3 \leq 1, \gamma = 3/2, \delta = 5/4 \leq 2, \) 满足 \(1 + \gamma \leq \alpha, 1 + \delta \leq \beta, \) 而且

\[
f(t, v(t)) = \frac{v}{2} + \frac{1}{10} v + 1, \\
g(t, u(t)) = \frac{v}{2} + \frac{1}{3} v + 1,
\]

易知 \(f, g \in C([0, 1] \times [0, 1], [0, 1]). \) 经计算, 可得

\[
\begin{align*}
&\int_0^1 G\alpha(1, s) ds = \frac{1}{\Gamma(\alpha)} \int_0^1 ((1-s)^{\alpha-1} - (1-s)^{\alpha-1}) ds = \\
&\frac{1}{\Gamma(2.5) \int_0^1 (1-s)^{0} ds - \frac{1}{\Gamma(2.5) \int_0^1 (1-s)^{3/2} ds}} = \frac{1}{5.538918}, \\
&\int_0^1 G\beta(1, s) ds = \frac{1}{\Gamma(\beta)} \int_0^1 ((1-s)^{\beta-1} - (1-s)^{\beta-1}) ds = \\
&\frac{1}{\Gamma(7/3) \int_0^1 (1-s)^{1/2} ds - \frac{1}{\Gamma(7/3) \int_0^1 (1-s)^{3/2} ds}} = \frac{1}{5.691837}.
\end{align*}
\]

因此

\[
M = \min \left\{ M_\alpha \left(\int_0^1 G\alpha(1, s) ds \right)^{-1}, M_\beta \left(\int_0^1 G\beta(1, s) ds \right)^{-1} \right\} = 5.538918.
\]

由于

\[
\int_0^1 (1/2)^{\alpha-1} G\alpha(1, s) ds = \\
\frac{(1/2)^{\alpha-1}}{\Gamma(\alpha)} \int_0^1 ((1-s)^{\alpha-1} - (1-s)^{\alpha-1}) ds = \\
\frac{(1/2)^{\alpha}}{\Gamma(2.5)} \int_0^1 ((1-s)^{0} - (1-s)^{3/2}) ds \approx \frac{1}{21.896336},
\]

\[
\int_0^1 (1/2)^{\beta-1} G\beta(1, s) ds = \\
\frac{(1/2)^{\beta-1}}{\Gamma(\beta)} \int_0^1 ((1-s)^{\beta-1} - (1-s)^{\beta-1}) ds = \\
\frac{(1/2)^{\beta}}{\Gamma(2.5)} \int_0^1 ((1-s)^{1/2} - (1-s)^{3/2}) ds \approx \frac{1}{23.886016},
\]

\[
N = \max \left\{ N_\alpha \left(\int_0^1 (1/2)^{\alpha-1} G\alpha(1, s) ds \right)^{-1}, N_\beta \left(\int_0^1 (1/2)^{\beta-1} G\beta(1, s) ds \right)^{-1} \right\} \approx 23.886 016.
\]

选取 \(R_1 = 4, r_1 = 1/12, R_2 = 3, r_2 = 1/9, \) 则有

\[
f(t, v(t)) = \nu^2 + \frac{t}{10} v + 2 \leq 7 \leq 2 R_1 = M_1 R_1 \]

\[
f(t, v(t)) = \nu^2 + \frac{t}{10} v + 2 \geq 2 = 24 r_1 = N_1 r_1 \]

\[
g(t, u(t)) = \nu^2 + \frac{t}{3} v + 3 \leq 11 \leq 4 R_2 = M_2 R_2 \]

\[
g(t, u(t)) = \nu^2 + \frac{t}{3} v + 3 \geq 3 \geq 25 r_2 = N_2 r_2 \]

且满足 \(0 < M_1, M_2 \leq M, N_1, N_2 \geq N. \) 定理 1 的条件均被满足, 故耦合系统(11)至少存在 1 个正解.

例 2 考虑如下耦合系统边值问题

\[
\begin{align*}
D^3 u(t) &= \frac{(1+e^t)}{2(1+e^t)} + \frac{6}{7}(1+e^t) \ln(1+u(t)) + \frac{6}{7}(1+e^t) + 1, \\
D^3 v(t) &= \frac{(1+e^t)}{2(1+e^t)} + \frac{6}{7}(1+e^t) \ln(1+u(t)) + \frac{6}{7}(1+e^t) + 1, \\
u(0) &= D^3 u(0) = D^3 u(1) = 0, \\
v(0) &= D^3 v(0) = D^3 v(1) = 0,
\end{align*}
\]

其中, \(0 < t < 1, n = 2, \gamma = 5/2, \beta = 7/3 < 3, \) 满足 \(1 + \gamma \leq \alpha, 1 + \delta \leq \beta, \) 而且

\[
f(t, v) = \frac{(1+e^t)}{2(1+e^t)} + \frac{6}{7}(1+e^t) \ln(1+u(t)) + \frac{6}{7}(1+e^t) + 1, \\
g(t, u) = \frac{(1+e^t)}{2(1+e^t)} + \frac{6}{7}(1+e^t) \ln(1+u(t)) + \frac{6}{7}(1+e^t) + 1.
\]

易知 \(f, g \in C([0, 1] \times [0, 1], [0, 1]). \) 且

\[
f(t, v) \leq 0.683 940 v^{3/2} + 0.857 143, \\
g(t, u) \leq 21.085 537 u^{3/2} + 1.571 429.
\]

定理 2 的条件均被满足, 故耦合系统(12)在 \([0, 1]\) 上至少有 1 个正解.

参考文献:

