Citation: | YaJuan ZHANG, . Linear Weingarten hypersurfaces in locally symmetric manifolds[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(6): 124-128. |
[1]SY Cheng, ST Yau.Hypersurfaces with constant scalar curvature[J].Math. Ann., 1977, 225(3):195-204
[2]S Shu.Complete hypersurfaces with constant scalar curvature in a hyperbolic space[J].Balkan J. Geom. Appl., 2007, 12(2):107-115 [3]H Li, YJ Suh, G Wei.Linear Weingarten hypersurfaces in a unit sphere[J].Bull. Korean Math. Soc., 2009, 46(2):321-329 [4]S Shu.Linear Weingarten hypersurfaces in a real space form[J].Glasgow Math. J., 2010, 52(3):635-648 [5]R L\'{o}pez.Rotational linear Weingarten surfaces of hyperbolic type[J].Israel J. Math., 2008, 167(1):283-301 [6]A Barros, J Silva, P Sousa.Rotational linear Weingarten surfaces into the Euclidean sphere[J].Israel J. Math., 2012, 192(2):819-830 [7]C P Aquino, H F de Lima.On the geometry of linear Weingarten hypersurfaces in the hyperbolic space[J].Monatsh. Math., 2013, 171(3-4):259-268 [8]C P Aquino, H F de Lima, M A L Vel\'{a}squez.A new characterization of complete linear Weingarten hypersurfaces in real space forms[J].Pacific J. Math., 2013, 261(1):33-43 [9]C P Aquino, H F de Lima, M A L Vel\'{a}squez.Generalized maximum principles and the characterization of linear Weingarten hypersurfaces in space forms[J].Michigan Math. J., 2014, 63(1):27-40 [10]C P Aquino, H F de Lima, M A L Vel\'{a}squez.Linear Weingarten hypersurfaces with bounded mean curvature in the hyperbolic space[J].Glasgow Math. J., 2015, 57(3):653-663 [11]X Chao, P Wang.Linear Weingarten hypersurfaces in locally symmetric manifolds[J].Balkan J.Geom. Appl., 2014, 19(2):50-59 [12]M Okumura.Hypersurfaces and a pinching problem on the second fundamental tensor[J].Amer. J. Math., 1974, 63(1):207-213
[1]SY Cheng, ST Yau.Hypersurfaces with constant scalar curvature[J].Math. Ann., 1977, 225(3):195-204
[2]S Shu.Complete hypersurfaces with constant scalar curvature in a hyperbolic space[J].Balkan J. Geom. Appl., 2007, 12(2):107-115 [3]H Li, YJ Suh, G Wei.Linear Weingarten hypersurfaces in a unit sphere[J].Bull. Korean Math. Soc., 2009, 46(2):321-329 [4]S Shu.Linear Weingarten hypersurfaces in a real space form[J].Glasgow Math. J., 2010, 52(3):635-648 [5]R L\'{o}pez.Rotational linear Weingarten surfaces of hyperbolic type[J].Israel J. Math., 2008, 167(1):283-301 [6]A Barros, J Silva, P Sousa.Rotational linear Weingarten surfaces into the Euclidean sphere[J].Israel J. Math., 2012, 192(2):819-830 [7]C P Aquino, H F de Lima.On the geometry of linear Weingarten hypersurfaces in the hyperbolic space[J].Monatsh. Math., 2013, 171(3-4):259-268 [8]C P Aquino, H F de Lima, M A L Vel\'{a}squez.A new characterization of complete linear Weingarten hypersurfaces in real space forms[J].Pacific J. Math., 2013, 261(1):33-43 [9]C P Aquino, H F de Lima, M A L Vel\'{a}squez.Generalized maximum principles and the characterization of linear Weingarten hypersurfaces in space forms[J].Michigan Math. J., 2014, 63(1):27-40 [10]C P Aquino, H F de Lima, M A L Vel\'{a}squez.Linear Weingarten hypersurfaces with bounded mean curvature in the hyperbolic space[J].Glasgow Math. J., 2015, 57(3):653-663 [11]X Chao, P Wang.Linear Weingarten hypersurfaces in locally symmetric manifolds[J].Balkan J.Geom. Appl., 2014, 19(2):50-59 [12]M Okumura.Hypersurfaces and a pinching problem on the second fundamental tensor[J].Amer. J. Math., 1974, 63(1):207-213 |