Citation: | JI Zhanjiang, LIU Hailin. The Research of G-lipschitz Shadowing Property, G-equicontinuity and G-non-wandering Point Set[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(4): 111-115. DOI: 10.6054/j.jscnun.2024056 |
By using the properties between the map f in metric G-space and induced map ˆf in orbital space, the dynamical relationship between G-Lipschitz shadowing property, G-equicontinuity, G-non-wandering point of the map f and Lipschitz shadowing property, equicontinuity, non-wandering point of the induced map ˆf are studied. The following conclusions are obtained: (1)The map f has G-Lipschitz shadowing property if and only if the induced map ˆf has Lipschitz shadowing property. (2)The map f is G-equicontinuous if and only if the induced map ˆf is equicontinuous. (3)The G-non-wandering point set ΩG(f) of the map f is dense in X if and only if the non-wandering point set Ω(ˆf) of the induced map ˆf is dense in X/G.
[1] |
汪火云, 曾鹏. 平均伪轨的部分跟踪[J]. 中国科学(数学), 2016, 46(4): 781-792.
WANG H Y, ZENG P. Partial shadowing of average-pseudo-orbits[J]. Scientia Sinica(Mathematica), 2016, 46(4): 781-792.
|
[2] |
冀占江, 张更容. 群作用下乘积映射的渐进平均和利普希茨跟踪性[J]. 河北师范大学学报(自然科学版), 2019, 43(6): 473-478.
JI Z J, ZHANG G R. Asymptotic average and Lipschitz shadowing property of the product map under group action[J]. Journal of Hebei Normal University(Natural Science), 2019, 43(6): 473-478.
|
[3] |
WANG L, ZHANG J L. Lipschitz shadowing property for 1-dimensional subsystems of ZK-actions[J]. Journal of Mathematical Research with Applications, 2021, 41(6): 615-628.
|
[4] |
XIE X R, YIN J D. On the eventual shadowing property and eventually shadowable point of set-valued dynamical systems[J]. Acta Mathematica Sinica: English Series, 2022, 38(6): 1105-1115. doi: 10.1007/s10114-022-1041-6
|
[5] |
罗飞, 金渝光. 强一致收敛条件下序列系统与极限系统的关联性[J]. 重庆师范大学学报(自然科学版), 2015, 32(4): 78-80.
LUO F, JIN Y G. The condition of strong uniform convergence of relationship between sequence system and limit the system[J]. Journal of Chongqing Normal University(Natural Science), 2015, 32(4): 78-80.
|
[6] |
钟玥铧, 汪火云. q_-等度连续点及q-敏感点[J]. 数学物理学报: A缉, 2018, 38(4): 671-678.
ZHONG Y H, WANG H Y. q_-equicontinuous points and q-sensitive points[J]. Acta Mathematica Scientia: Series A, 2018, 38(4): 671-678.
|
[7] |
LI J, TU S M, YE X D. Mean equicontinuity and mean sensitivity[J]. Ergodic Theory and Dynamical Systems, 2015, 35: 2587-2612.
|
[8] |
MA C N, ZHU P Y, LU T X. The d-shadowing property on nonuniformly expanding maps[J]. Journal of Mathematical Research with Applications, 2017, 37(5): 613-618.
|
[9] |
JI Z J. The G-sequence shadowing property and G-equicontinuity of the inverse limit spaces under group action[J]. Open Mathematics, 2021, 19: 1290-1298.
|
[10] |
KULCZYCKI M, KWIETNIAK D, OPROCHA P. On almost specification and average shadowing properties[J]. Fundamenta Mathematice, 2014, 224: 241-278.
|
[11] |
LUO X F, NIE X X, YIN J D. On the shadowing property and shadowable point of set-valued dynamical systems[J]. Acta Mathematica Sinica: English Series, 2020, 36(12): 1384-1394.
|
[12] |
WANG L, WANG X S, ZHU Y J. Quasi-shadowing pro-perty on random partially hyperbolic sets[J]. Acta Mathe-matica Sinica: English Series, 2018, 34 (9): 1429-1444.
|
[13] |
吴新星. 测度中心的Mα-跟踪性质[J]. 应用数学学报, 2024, 47(2): 355-368.
WU X X. Mα-shadowing property on the measure center[J]. Acta Mathematicae Applicatae Sinica, 2024, 47(2): 355-368.
|
[14] |
XIE X R, YIN J D. Several dynamics of dynamical systems with the eventual shadowing property[J]. Acta Mathematica Sinica: English Series, 2023, 39(10): 1907-1918.
|
[15] |
贺毅, 张君, 白丹莹. 逆极限空间转移映射非游荡集的中心测度[J]. 重庆工商大学学报(自然科学版), 2015, 32(5): 49-51.
HEN Y, ZHANG J, BAI D Y. Measurement of the center of the inverse limit space transition mapping none-wande-ring set[J]. Journal of Chongqing Technology and Business University(Natural Science Edition), 2015, 32(5): 49-51.
|
[16] |
WANG H Y, XIONG J C, LU J. Everywhere chaos and equicontinuity via furstenberg families[J]. Advances in Mathematics, 2011, 40(4): 447-456.
|
[17] |
冀占江. G-等度连续条件下若干点集的研究[J]. 华南师范大学学报(自然科学版), 2023, 55(6): 123-127.
JI Z J. The research of some point set under the condition of G-equicontinuity[J]. Journal of South China Normal University(Natural Science Edition), 2023, 55(6): 123-127.
|
[18] |
SAKAI K. Various shadow properties for positively expansive maps[J]. Topology and Its Applications, 2003, 131: 15-31.
|
[19] |
SUN T X, SU G W, XI H J, et al. Equicontinuity of maps on a dendrite with finite Branch points[J]. Acta Mathe-matica Sinica: English Series, 2017, 33(8): 1125-1130.
|
[20] |
CHOI T, KIM J. Decomposition theorem on G-spaces[J]. Osaka Journal of Mathematics, 2009, 46: 87-104.
|
[21] |
EKTA S. Devaney Chaos for maps on G-spaces[J]. Taiwanese Journal of Mathematics, 2018, 22(2): 339-348.
|
1. |
姚琴, 谢柏臻, 裴一花. 聚乙二醇-聚乙烯亚胺负载超顺磁纳米Fe_3O_4的合成及其基因转染应用. 华南师范大学学报(自然科学版). 2018(06): 48-53 .
![]() |