Citation: | WEI Qi, CHEN Junyu. The Influencing Factors of CO2 Shadow Price in Tianjin's Power Industry[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(4): 39-46. DOI: 10.6054/j.jscnun.2024048 |
A model for minimizing power generation costs in the power industry was established based on linear programming duality theory, and the shadow price of carbon dioxide in the power industry from 2014 to 2020 was measured and analyzed by taking Tianjin as an example, and the influencing factors were studied. The results indicate that the reduction of photovoltaic power generation costs in Tianjin's power sector will lead to a decrease in its carbon dioxide shadow price: for every 0.1 yuan per kWh reduction in photovoltaic power generation cost, the carbon dioxide shadow price decreases by an average of 13.66 yuan per ton, alongside a reduction in the average power generation cost. Under the condition of tightening carbon emission constraints, the shadow price of carbon dioxide in Tianjin's power industry did not show significant changes, but its power generation structure was continuously optimized, indicating that Tianjin can adjust the power generation structure to meet carbon quota requirements while keeping the marginal abatement cost unchanged. High carbon intensity thermal power generation can reduce the shadow price of CO2 in the power sector by implementing CCS technology, though the average cost of power generation will rise.
[1] |
朱法华, 徐静馨, 潘超. 电力行业减污降碳发展状况及目标展望[J]. 环境保护, 2022, 50(10): 15-20.
ZHU F H, XU J X, PAN C. Development situation and target prospect on the reduction of pollutant and carbon emissions in power industry[J]. Environmental Protection, 2022, 50(10): 15-20.
|
[2] |
蒋伟杰, 张少华. 中国工业二氧化碳影子价格的稳健估计与减排政策[J]. 管理世界, 2018, 34(7): 32-49.
JIANG W J, ZHANG S H. Robust estimation and application of shadow price of CO2: evidence from China[J]. Journal of Management World, 2018, 34(7): 32-49.
|
[3] |
袁鹏, 程施. 我国工业污染物的影子价格估计[J]. 统计研究, 2011, 28(9): 66-73.
YUAN P, CHENG S. Estimating shadow pricing of industrial pollution in China[J]. Statistical Research, 2011, 28(9): 66-73.
|
[4] |
汪慧玲, 卢锦培, 白婧. 中国农业污染物影子价格及其污染成该研究[J]. 吉林大学社会科学学报, 2014, 54(5): 40-48;172.
WANG H L, LU J P, BAI J. Shadow prices and pollution costs in Chinese agriculture[J]. Jilin University Journal Social Sciences Edition, 2014, 54(5): 40-48;172.
|
[5] |
宋杰鲲, 曹子建, 张凯新. 我国省域二氧化碳影子价格研究[J]. 价格理论与实践, 2016(6): 76-79.
SONG J K, CAO Z J, ZHANG K X. Study on the shadow price of CO2 in our province[J]. Price: Theory & Practice, 2016(6): 76-79.
|
[6] |
WANG K, YANG K X, WEI Y M, et al. Shadow prices of direct and overall carbon emissions in China's construction industry: a parametric directional distance function-based sensitive estimation[J]. Structural Change and Economic Dynamics, 2018, 47: 180-193.
|
[7] |
张宁, 刘青君. 碳交易减少了中国火电厂的减排成本吗?基于2005—2010年面板数据的实证分析[J]. 北京理工大学学报(社会科学版), 2019, 21(1): 7-16.
ZHANG N, LIU Q J. Does carbon trading reduce the carbon emissions abatement cost for Chinese thermal companies? Empirical analysis based on panel data from 2005 to 2010[J]. Journal of Beijing Institute of Technology(Social Sciences Edition), 2019, 21(1): 7-16.
|
[8] |
叶斌, 唐杰, 陆强. 电力行业碳排放权资源影子价格模型: 以海南为例[J]. 运筹与管理, 2013, 22(4): 157-162.
YE B, TANG J, LU Q. Carbon emissions allowance shadow price model: an application in Hainan power generation sector[J]. Operations Research and Management Science, 2013, 22(4): 157-162.
|
[9] |
叶斌. 基于资源优化配置的我国电力行业碳减排成该研究——以深圳市为例[D]. 哈尔滨: 哈尔滨工业大学, 2013: 28-35.
YE B. Research on carbon emission reduction cost of the power industry of China based on resource allocation optimization: taking Shenzhen for example[D]. Harbin: Harbin Institute of Technology, 2013: 28-35.
|
[10] |
天津市生态环境局. 市生态环境局关于天津市2022年度碳排放配额安排的通知[R](2022-11-30)[2024-01-23]. https://sthj.tj.gov.cn/ZWGK4828/ZCWJ6738/sthjjwj/202212/t20221202_6049138.html.
|
[11] |
国家统计局能源统计司. 中国能源统计年鉴[M]. 北京: 中国统计出版社, 2022.
|
[12] |
SIMON E, LEANDRO B, KYOKO, et al. 2006 IPCC guidelines for national gas inventories[M]. Japan: The Institute for Global Environmental Strategies, 2006.
|
[13] |
中国电力企业联合会. 中国电力年鉴[M]. 北京: 中国电力出版社, 2022.
|
[14] |
孙莉莉. 关于发电能源成该研究——基于生命周期评价理论的分析[J]. 价格理论与实践, 2018(5): 151-154.
SUN L L. Research on power generation cost—Based on the analysis of life cycle assessment theory[J]. Price: Theory & Practice, 2018(5): 151-154.
|
[15] |
天津市发展和改革委员会. 天津市电力发展"十四五"规划[R](2021-12-31)[2023-09-18]. https://fzgg.tj.gov.cn/zwgk_47325/zcfg_47338/zcwjx/fgwj/202201/t20220127_5791194.html.
|
[16] |
中国可再生能源发展战略研究项目组. 中国可再生能源发展战略丛书[M]. 北京: 中国电力出版社, 2008.
|
[17] |
张宁, 刘青君. 碳交易对碳达峰、碳中和目标的成本效益机制研究——基于试点省市高耗能行业的模拟[J]. 广东社会科学, 2022(2): 46-58.
ZHANG N, LIU Q J. Research on the cost-benefit mechanism of carbon trading on carbon peaking and carbon neutrality targets: based on the simulation of high energy-consuming industries in pilot provinces and cities[J]. Social Sciences in Guangdong, 2022(2): 46-58.
|
[18] |
魏丽莉, 候宇琪. 中国工业二氧化碳边际减排成本测算与行业碳达峰预测[J]. 经济理论与经济管理, 2023, 43(2): 63-77.
WEI L L, HOU Y Q. The estimate of China's industrial marginal carbon abatement cost and industry carbon peak prediction[J]. Economic Theory and Business Management, 2023, 43(2): 63-77.
|
[19] |
聂洪光, 刘尚奇, 莫建雷. 补贴"退坡"背景下可再生能源发电激励政策及发展路径研究——基于拓展的平准化度电成本模型[J]. 中国地质大学学报(社会科学版), 2022, 22(6): 66-81.
NIE H G, LIU S Q, MO J L. Incentive politics and development path of China's renewable energy power under the background of declining subsidy—A study using comprehensive levelized cost of electricity (CLCOE) model[J]. Journal of China University of Geo-sciences (Social Sciences Edition), 2022, 22(6): 66-81.
|