• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHAO Wenyue, SANG Guoqiang, XIAO Zheyu, DIWU Pengxiang, HU Shuai. Numerical Simulation Method of CO2 EOR Considering the Competitive Dissolution of CH4 and CO2 in the Aqueous Phase[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(4): 19-26. DOI: 10.6054/j.jscnun.2024046
Citation: ZHAO Wenyue, SANG Guoqiang, XIAO Zheyu, DIWU Pengxiang, HU Shuai. Numerical Simulation Method of CO2 EOR Considering the Competitive Dissolution of CH4 and CO2 in the Aqueous Phase[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(4): 19-26. DOI: 10.6054/j.jscnun.2024046

Numerical Simulation Method of CO2 EOR Considering the Competitive Dissolution of CH4 and CO2 in the Aqueous Phase

More Information
  • Received Date: March 29, 2024
  • To investigate the interactions between CO2 and CH4 in aqueous phase and their competitive dissolution effects on CO2-enhanced oil recovery processes, a numerical simulation model incorporating the competitive dissolution of CO2 and CH4 was developed. The established model modifies the solubility of CH4 at different CO2 concentrations and improves the equilibrium constants that characterize methane solubility. Simulation results indicate significant changes in the distribution of gas components due to competitive dissolution, affecting the gas-oil ratio and water cut fluctuations, thereby impacting the production performances of the reservoir. Under competitive dissolution, the CH4 content in the gas phase increases, further confirming the complexity of interactions between CH4 and CO2. This model accurately reflects gas interactions during the CO2 flooding process.

  • [1]
    ORR F M, TABER J J. Use of carbon dioxide in enhanced oil recovery[J]. Science, 1984, 224: 563-569. doi: 10.1126/science.224.4649.563
    [2]
    KUMAR N, AUGUSTO S M, OJHA K, et al. Fundamental aspects mechanisms and emerging possibilities of CO2 miscible flooding in enhanced oil recovery: a review[J]. Fuel, 2022, 330: 125633/1-19.
    [3]
    BIKKINA P, WAN J, KIM Y, et al. Influence of wettability and permeability heterogeneity on miscible CO2 flooding efficiency[J]. Fuel, 2016, 166: 219-226. doi: 10.1016/j.fuel.2015.10.090
    [4]
    GUO Y, LIU F, QIU J, et al. Microscopic transport and phase behaviors of CO2 injection in heterogeneous formations using microfluidics[J]. Energy, 2022, 256: 124524/1-13.
    [5]
    秦积舜, 张可, 陈兴隆. 高含水后CO2驱油机理的探讨[J]. 石油学报, 2010, 31(5): 797-780.

    QIN J S, ZHANG K, CHEN X L. Mechanism of the CO2 flooding as reservoirs containing high water[J]. Acta Petrolei Sinica, 2010, 31(5): 797-800.
    [6]
    DONG L F, ZHANG D X. Method of indoor experiment and its monitoring on water flooding in micro heterogeneity reservoir[J]. Chemical Engineering Science, 2018, 18: 190-194.
    [7]
    XIAO P F, LENG X Y, XIAO H M, et al. Investigation effect of wettability and heterogeneity in water flooding and on microscopic residual oil distribution in tight sandstone cores with NMR technique[J]. Open Physics, 2017, 15: 544-550. doi: 10.1515/phys-2017-0062
    [8]
    袁钟涛, 杨胜来, 张政, 等. 特低渗油藏注CO2吞吐适应性评价及规律模拟[J]. 非常规油气, 2022, 9(5): 85-92.

    YUAN Z T, YANG S L, ZHANG Z, et al. Adaptability evaluation and regular simulation of CO2 injection huff and puff in ultra-low permeability reservoirs[J]. Unconventional Oil & Gas, 2022, 9(5): 85-92.
    [9]
    ZHAO X, RUI Z, LIAO X. Case studies on the CO2 storage and EOR in heterogeneous, highly water-saturated and extra-low permeability Chinese reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 29: 275-283. doi: 10.1016/j.jngse.2015.12.044
    [10]
    汤勇, 杜志敏, 孙雷, 等. CO2在地层水中溶解对驱油过程的影响[J]. 石油学报, 2011, 32(2): 311-314.

    TANG Y, DU Z M, SUN L, et al. Influence of CO2 dissolving in formation water on CO2 flooding process[J]. Acta Petrolei Sinica, 2011, 32(2): 311-314.
    [11]
    ARRI L E, YEE D, MORGAN W D, et al. Modeling coalbed methane production with binary gas sorption[C]. In Proceedings of the SPE Rocky Mountain Regional Meeting. Casper: SPE, 1992.
    [12]
    郭红强, 杜敏, 姚健, 等. 延长低渗透油藏CO2驱油参数优化数值模拟研究[J]. 非常规油气, 2024, 11(1): 78-84.

    GUO H Q, DU M, YAO J, et al. Numerical simulation study on optimization of CO2 flooding parameters in Yanchang low permeability reservoir[J]. Unconventional Oil & Gas, 2024, 11(1): 78-84.
    [13]
    BUSCH A, ALLES S, GENSTERBLUM Y, et al. Carbon dioxide storage potential of shales[J]. International Journal of Greenhouse Gas Control, 2008, 2: 297-308. doi: 10.1016/j.ijggc.2008.03.003
    [14]
    DING J C, YAN C H, WANG G Z, et al. Competitive adsorption between CO2 and CH4 in tight sandstone and its influence on CO2-injection enhanced gas recovery(EGR)[J]. International Journal of Greenhouse Gas Control, 2022, 113: 1223-1246.
    [15]
    杨勇. 胜利油田特低渗透油藏CO2驱技术研究与实践[J]. 油气地质与采收率, 2020, 27(1): 11-19.

    MYANG Y. Research and application of CO2 flooding technology in extra-low permeability reservoirs of Shengli oilfield[J]. Petroleum Geology and Recovery Efficiency, 2022, 27(1): 11-19.
    [16]
    HOU G, LIU T, YUAN X, et al. Study on the variation rule of produced oil components during CO2 flooding in low permeability reservoirs[J]. Computer Modeling in Engineering & Sciences, 2020, 123(3): 1223-1246.
    [17]
    XIE W, WANG M, WANG H. Adsorption characteristics of CH4 and CO2 in shale at high pressure and temperature[J]. ACS Omega, 2021, 6: 18527-18536.

Catalog

    Article views (70) PDF downloads (32) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return