• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHANG Xuan, CHEN Jing, WU Honghai, WEI Yanfu. Amechanistic Investigation on the Removal of Cr(Ⅵ) Anion by Its Adsorptive-reductive Coupling Immobilization onto Siderite[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(3): 25-33. DOI: 10.6054/j.jscnun.2024034
Citation: ZHANG Xuan, CHEN Jing, WU Honghai, WEI Yanfu. Amechanistic Investigation on the Removal of Cr(Ⅵ) Anion by Its Adsorptive-reductive Coupling Immobilization onto Siderite[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(3): 25-33. DOI: 10.6054/j.jscnun.2024034

Amechanistic Investigation on the Removal of Cr(Ⅵ) Anion by Its Adsorptive-reductive Coupling Immobilization onto Siderite

More Information
  • Received Date: February 13, 2023
  • Available Online: August 16, 2024
  • A synthetic siderite mineral material was employed to explore the sorption isotherms and kinetics of Cr(Ⅵ), aiming to reveal the removal characteristics of siderite for aqueous chromate anion Cr(Ⅵ) from waters by its adsorptive-reductive coupling immobilization. Here, an emphasis was placed to investigate the effect of solution pH on the efficiency for Cr(Ⅵ) removal, then all the siderite samples before and after reacting with Cr(Ⅵ) were characterized and analyzed in-depth. The results showed that the reaction process for Cr(Ⅵ) removal by synthetic siderite were quite well fitted to the Langmuir adsorption isotherm model, and the removal kinetics just well followed the pseudo-second-order kinetic model. Cr(Ⅵ) can be rapidly reduced to Cr(Ⅲ) by Fe(Ⅱ) on siderite surface, but Cr(Ⅵ) oxidative ability is somewhat decreased as solution pH increases, thus leading to chromium removal rate to be decreased obviously at the higher pH. Fe(Ⅲ)-Cr(Ⅲ) hydroxide co-precipitation had formed on siderite surface, so that Cr(Ⅵ) anion could be effectively removed by siderite.

  • [1]
    FU F, WANG Q. Removal of heavy metal ions from wastewaters: a review[J]. Journal of Environmental Management, 2011, 92(3): 407-418. doi: 10.1016/j.jenvman.2010.11.011
    [2]
    SUMATHIK M S, MAHIMAIRAJA S, NAIDU R. Use of low-cost biological wastes and vermiculite for removal of chromium from tannery effluent[J]. Bioresource Technology, 2005, 96: 309-316. doi: 10.1016/j.biortech.2004.04.015
    [3]
    PARKS H, SHIN S S, PARK C H, et al. Poly(acryloyl hydrazide)-grafted cellulose nanocrystal adsorbents with an excellent Cr(Ⅵ) adsorption capacity[J]. Journal of Hazardous Materials, 2020, 394: 122512/1-12.
    [4]
    RAMAKRISHNAIAH C R, PRATHIMA B. Hexavalent chromium removal from industrial wastewater by chemical precipitation method[J]. International Journal of Engineering Research and Applications, 2012, 2(2): 599-603.
    [5]
    赵邦清. 二氧化硫还原法处理高浓度含铬废水[J]. 化工管理, 2013(14): 200-201. https://www.cnki.com.cn/Article/CJFDTOTAL-FGGL201314168.htm

    ZHAO B Q. Treatment of high concentration chromium wastewater by sulfur dioxide reduction[J]. Chemical Enterprise Management, 2013(14): 200-201. https://www.cnki.com.cn/Article/CJFDTOTAL-FGGL201314168.htm
    [6]
    李易轩. 多孔不锈钢基氧化铝膜对水溶液中Cr(Ⅵ)和Cd(Ⅱ)的去除性能研究[D]. 咸阳: 西北农林科技大学, 2017.
    [7]
    LU W, LI J, SHENG Y, et al. One-pot synthesis of magnetic iron oxide nanoparticle-multiwalled carbon nanotube composites for enhanced removal of Cr(Ⅵ) from aqueous solution[J]. Journal of Colloid and Interface Science, 2017, 505: 1134-1146. doi: 10.1016/j.jcis.2017.07.013
    [8]
    孙玉林. 废水中Cr(Ⅵ)、As(Ⅴ)处理技术及其污染去除机理[D]. 山东建筑大学, 2015.
    [9]
    LÜ G, LI Z, JIANG W T, et al. Removal of Cr(Ⅵ) from water using Fe(Ⅱ)-modified natural zeolite[J]. Chemical Engineering Research & Design, 2014, 92: 384-390.
    [10]
    姚培慧. 中国铁矿志[M]. 北京: 冶金工业出版社, 1993.
    [11]
    SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17: 517-568. doi: 10.1016/S0883-2927(02)00018-5
    [12]
    AHMED K M, BHATTACHARYA P, HASAN M A, et al. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview[J]. Applied Geochemistry, 2004, 19: 181-200. doi: 10.1016/j.apgeochem.2003.09.006
    [13]
    COLEMAN M L, HEDRICK D B, LOVLEY D R, et al. Reduction of Fe(Ⅲ) in sediments by sulfate-reducing bacteria[J]. Nature, 1993, 361: 436-438. doi: 10.1038/361436a0
    [14]
    XING B B, GRAHAM N, YU W Z. Transformation of siderite to goethite by humic acid in the natural environment[J]. Communications Chemistry, 2020, 3(1): 7461-7469.
    [15]
    姚雪霞, 戴存礼, 李晓林, 等. 邻菲罗啉分光光度法测定微量铁实验条件的探讨[J]. 实验室研究与探索, 2015, 34(3): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY201503006.htm
    [16]
    RANDI N, ISAAC A L, PHILIP L F. FeCO3 Synthesis pathways: the influence of temperature, duration, and pressure[J]. ACS Omega, 2023, 8(3): 3404-3414. doi: 10.1021/acsomega.2c07303
    [17]
    ÖZKAN G, BARIŞ S, UČUR Ç, et al. Hydrothermal synthesis of siderite and application as catalyst in the electro-fenton oxidation of p-Benzoquinone[J]. Molecules, 2022, 27(22): 8056-8056. doi: 10.3390/molecules27228056
    [18]
    崔振杰. 碳酸钕反应结晶过程及晶体粒度形貌调控研究[D]. 北京: 中国科学院大学, 2021.
    [19]
    LI X, ZHENG H, WANG Y, et al. Fabricating an enhanced sterilization chitosan-based flocculants: synthesis, characterization, evaluation of sterilization and flocculation[J]. Chemical Engineering Journal, 2017, 319: 119-130. doi: 10.1016/j.cej.2017.02.147
    [20]
    张刚生, 黎铉海. 生物成因文石的FTIR光谱特征[J]. 光谱学与光谱分析, 2005(10): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200510014.htm
    [21]
    LEGRAND L, MAZEROLLES L, CHAUSSÉ A. The oxidation of carbonate green rust into ferric phases: solid-state reaction or transformation via solution[J]. Geochimica et Cosmochimica Acta, 2004, 683: 497-507.
    [22]
    崔蒙蒙, 刘锋, 黄天寅, 等. 水铁矿吸附磷酸根的影响因素[J]. 环境工程学报, 2017, 11(4): 2285-2290. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201704046.htm
    [23]
    黄中林. 氢氧化铬的基础及应用研究[D]. 重庆: 重庆大学, 2016.
    [24]
    SHPACHENKO A K, SOROKHTINA N V, CHUKANOV N V. Genesis and compositional characteristics of natural γ-CrOOH[J]. Geochemistry International, 2006, 44(7): 681-689. doi: 10.1134/S0016702906070056
    [25]
    王小明. 几种亚稳态铁氧化物的结构、形成转化及其表面物理化学特性[D]. 武汉: 华中农业大学, 2015.
    [26]
    YI Y Q, TU G Q, ZHAO D Y, et al. Key role of FeO in the reduction of Cr(Ⅵ) by magnetic biochar synthesised using steel pickling waste liquor and sugarcane bagasse[J]. Journal of Cleaner Production, 2020, 245: 118886/1-9. doi: 10.1016/j.jclepro.2019.118886
    [27]
    BIBⅡ, NIAZI N K, CHOPPALA G, et al. Chromium (Ⅵ) removal by siderite (FeCO3) in anoxic aqueous solutions: an X-ray absorption spectroscopy investigation[J]. Science Total Environment, 2018, 640: 1424-1431.
    [28]
    LAZARIDIS N K, CHARALAMBOUS C, DELIYANNI E A. Sorptive removal of trivalent and hexavalent chromium from binary aqueous solutions by composite alginategoethite beds[J]. Water Research, 2005, 39: 4385-4396. doi: 10.1016/j.watres.2005.09.013
    [29]
    张小梅, 李睿华, 刘卓, 等. 天然菱铁矿去除水中磷的性能研究[J]. 环境科学学报, 2017, 37(1): 219-226. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201701027.htm
    [30]
    戴树桂. 环境化学[M]. 第二版. 北京: 高等教育出版社, 2006.
    [31]
    邵惟俊. 汞、镉、钛、铬化合物的Eh-pH图[J]. 长安大学学报(地球科学版), 1980(1): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX198000003.htm
    [32]
    汤鸿霄. 用水废水化学基础[M]. 北京: 中国建筑工业出版社, 1979.
  • Cited by

    Periodical cited type(1)

    1. 王建彬,唐孝生,周笔,曾夏辉,黎金城,周赢武. PCE10显著提升三元倍增型有机光电探测器红光与近红外光探测能力. 发光学报. 2023(12): 2222-2230 .

    Other cited types(0)

Catalog

    Article views (59) PDF downloads (39) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return