• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHEN Yuxin, ZHOU Guoyong, WANG Fan, FU Yuanxiang. Preparation of Silicon/Carbon Composite by Liquid Phase Displacement Method and Its Lithium Storage Performance[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(3): 9-14. DOI: 10.6054/j.jscnun.2024032
Citation: CHEN Yuxin, ZHOU Guoyong, WANG Fan, FU Yuanxiang. Preparation of Silicon/Carbon Composite by Liquid Phase Displacement Method and Its Lithium Storage Performance[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(3): 9-14. DOI: 10.6054/j.jscnun.2024032

Preparation of Silicon/Carbon Composite by Liquid Phase Displacement Method and Its Lithium Storage Performance

More Information
  • Received Date: May 24, 2024
  • Available Online: August 16, 2024
  • Novel liquid phase displacement method was developed to prepare a silicon/carbon composite (Si/C) by directly reacting nano silicon (which was synthesized by magnesium thermal reduction of SiO2) and glucose. Subsequently, When the Si/C is used as the anode material for LIBs, the batteries display favorable discharge capacities (800 mAh/g after 50 cycles at 100 mA/g), high-rate performance (385 mAh/g at 4 200 mA/g), and excellent stable cyclability (459 mAh/g after 120 cycles at 840 mAh/g). Which is much higher than the discharge capacity of pure silicon and carbon. Such results indicate that the intervention of carbon effectively conductivity improves of Si for the lithium storage performance increasing. Notably, the research might provide a new strategy for the application of Si/C composite materials in high-performance LIBs.

  • [1]
    LI Z B, LI Y K, PAN W, et al. Study on the technical and economic feasibility of echelon use of waste power batteries used in new energy vehicles in China[J]. E3s Web of Confrences, 2021, 245: 01011/1-4.
    [2]
    CUI Y. Silicon anodes[J]. Nature Energy, 2021, 6(1): 995-996.
    [3]
    HOSSAIN M A M, TIONG S K, HANNAN M A, et al. Recent advances in silicon nanomaterials for lithium-ion batteries: synthesis approaches, emerging trends, challenges, and opportunities[J]. Sustainable Materials and Technologies, 2024, 40: 964-969.
    [4]
    WANG Q S, MENG T, LI Y H, et al. Consecutive chemical bonds reconstructing surface structure of silicon anode for high-performance lithium-ion battery[J]. Energy Storage Materials, 2021, 39: 354-364. doi: 10.1016/j.ensm.2021.04.043
    [5]
    SUNG J, KIM N, MA J, et al. Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack[J]. Nature Energy, 2021, 6(12): 1164-1175. doi: 10.1038/s41560-021-00945-z
    [6]
    HAN J, TANG X N, GE S F, et al. Si/C particles on graphene sheet as stable anode for lithium-ion batteries[J]. Journal of Materials Science & Technology, 2021, 80: 259-265.
    [7]
    HARUTA M, HIOKI R, MORIYASU T. Morphology changes and long-term cycling durability of Si flake powder negative electrode for lithium-ion batteries[J]. Electrochimica Acta, 2018, 267: 94-101. doi: 10.1016/j.electacta.2018.02.062
    [8]
    符远翔, 孙艳辉, 葛杏心. 单分散纳米二氧化硅的制备与表征[J]. 硅酸盐通报, 2008, 27(1): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200801036.htm

    FU Y X, SUN Y H, GE X X. Synthesis and characterization of monodisperse SiO2 nanoparticles[J]. Bulletin of the Chinese Ceramic Society, 2008, 27(1): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200801036.htm
    [9]
    HE S Y, CHO C S, CHEN J K, et al. Good structural stability of Si anodes achieved through dispersant addition and use of carbon fabric as conductive Framework[J]. Journal of the Electrochemical Society, 2021, 168(6): 534-537.
    [10]
    DU J T, MA J K, LIU Z T, et al. Fabrication of Si@mesocarbon microbead (MCMB) anode based on carbon texture for lithium-ion batteries[J]. Materials Letters, 2022, 315: 236-238.
    [11]
    刘淳正, 来沛霈, 孙卓, 等. 构造凹陷的硅碳颗粒提高锂离子电池负极电化学性能[J]. 储能科学与技术, 2024, 13(4): 1303-1307. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX202404019.htm

    LIU C Z, LAI P P, SUN Z, et al. Dented surface on silica-carbon particles to improve the electrochemical performance of lithium-ion battery anode[J]. Energy Storage Science and Technology, 2024, 13(4): 1303-1307. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX202404019.htm
    [12]
    ZHANG Z D, ZHOU H P, XUE W D, et al. Nitrogen-plasma doping of carbon film for a high-quality layered Si/C composite anode[J]. Journal of Colloid and Interface Science, 2022, 605: 463-471. doi: 10.1016/j.jcis.2021.06.147
    [13]
    ZAND A L, MANI A, JALALI, H, et al. Influence of defects on enhancing lithium diffusivity in crystalline silicon anodes for fast charging lithium-ion batteries[J]. Journal of Power Sources, 2024, 606: 234557/1-11.
    [14]
    吴琼, 许咏杰, 钟展雄, 等. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202411001.htm

    WU Q, XU Y J, ZHONG Z X, et al. Progress of silicon carbon composite anode structure for lithium-ion batteries[J]. Materials Reports, 2024, 38(11): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202411001.htm
    [15]
    王海, 李素丽, 郭若愚, 等. 硅碳负极的失效机理与FEC的改善作用[J]. 华南师范大学学报, 2024, 56(2): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202402003.htm

    WANG H, LI S L, GUO R Y, et al. Degradation mechanism of and fluoroethylene carbonate effect on Si-C anodes[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56 (2): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202402003.htm

Catalog

    Article views (106) PDF downloads (54) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return