Citation: | LI Xian, DA Juxia, ZHANG Huan. The Existence of n Symmetric Positive Solutions to A Fourth-Order Two-Point Boundary Value Problem[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 123-127. DOI: 10.6054/j.jscnun.2024015 |
[1] |
达举霞. 四阶两点边值问题3个对称正解的存在性[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 90-93. doi: 10.6054/j.jscnun.2021014
DA J X. The existence of three symmetric positive solutions to a fourth-order two-point boundary value problems[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 90-93. doi: 10.6054/j.jscnun.2021014
|
[2] |
达举霞, 韩晓玲. 奇异四阶三点边值问题正解的存在性[J]. 四川大学学报(自然科学版), 2017, 54(3): 441-447. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201703001.htm
DA J X, HAN X L. Positive solutions of singular fourth-order three-point boundary value problem[J]. Journal of Sichuan University (Natural Science Edition), 2017, 54(3): 441-447. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201703001.htm
|
[3] |
MINGHE P, SUNG K C. Monotone iterative technique and symmetric positive solutions for a fourth-order boundary value problem[J]. Mathematical and Computer Mo-delling, 2010, 51: 1260-1267. doi: 10.1016/j.mcm.2010.01.009
|
[4] |
林府标, 杨欣霞, 张千宏. 一类积分-偏微分群体平衡方程的非完全不变群及显式精确解[J]. 华南师范大学学报(自然科学版), 2023, 55(5): 72-79. doi: 10.6054/j.jscnun.2023065
LIN F B, YANG X X, ZHANG Q H. Incomplete invariant groups and explicit exact solutions of a class of integropartial differential population balance equation[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(5): 72-79. doi: 10.6054/j.jscnun.2023065
|
[5] |
达佳丽, 韩晓玲. 三阶三点边值问题3个正解的存在性[J]. 华南师范大学学报(自然科学版), 2015, 47(3): 148-150. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201503026.htm
DA J L, HAN X L. The existence of three positive solutions of third-order three-point boundary value problem[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(3): 148-150. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201503026.htm
|
[6] |
陈剑, 曾泰山. 时间分数阶次扩散方程的多层扩充算法[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 106-110. doi: 10.6054/j.jscnun.2020051
CHEN J, ZENG T S. Multi-layer extended algorithm for time fractional diffusion equation[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 106-110. doi: 10.6054/j.jscnun.2020051
|
[7] |
达举霞, 霍梅, 韩晓玲. 带变号格林函数的四阶三点边值问题的多个正解的存在性[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 109-113. http://journal-n.scnu.edu.cn/cn/article/id/3845
DA J X, HUO M, HAN X L. The existence of multiple positive solutions to fourth-order three-point boundary value problems with changing sign Green's founction[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(3): 109-113. http://journal-n.scnu.edu.cn/cn/article/id/3845
|
[8] |
LI Y K, WANG L Y. Multiple positives solutions of nonlinear third-order boundary value problems with integral boundary conditions on times scales[J]. Advances in Difference Equations, 2015, 90: 1-8.
|
[9] |
PALAMIDES A P, SMYRLIS G. Positive solutions to a singular third-order three-point boundary value problem with an indefinitely signed Green's function[J]. Nonlinear Analysis, 2008, 68(1): 2014-2118.
|
[10] |
ZHOU Y L, ZHANG X M. Triple positive solutions of fourth-order impulsive differential equations with integral boundary conditions[J]. Boundary Value Problems, 2015, 2015: 2/1-14.
|
[11] |
WANG Y. Existence of multiple positive solutions for one-dimensional p-Laplacian[J]. Journal of Mathematical Analysis and Applications, 2006, 315: 144-153.
|
[12] |
LIU Y J. Picard boundary value problems of second order p-Laplacian differential equations[J]. Chinese Quarterly Journal of Mathematics, 2011, 26(1): 77-84.
|
[13] |
WU H Y, ZHANG J H. Positive solutions of higher-order four-point boundary value problem with Laplacian operator[J]. Journal of Computational and Applied Mathema-tics, 2010, 233(11): 2757-2766.
|
[14] |
YANG X J, KIN Y, LO K. Periodic solutions for a generalized p-Laplacian equation[J]. Applied Mathematics Letter, 2012, 25(3): 586-589.
|
[15] |
AVERY R I, PETERSON A. Three positive fixed points of nonlinear operators on ordered Banach spaces[J]. Computers & Mathematics with Applications, 2001, 42(3/4/5): 313-322.
|
[16] |
AVERY R I. A generalization of the Leggett-Williams fixed-point theorem[J]. Mathematical Sciences Research Hot-Line, 1999, 3(7): 9-14.
|