• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
GUO Dong, TANG Huo, WEN Chuanjun, LI Zongtao. The Upper Bounds of the Third Hankel Determinant for Two Subclasses of Analytic Functions[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 118-122. DOI: 10.6054/j.jscnun.2024014
Citation: GUO Dong, TANG Huo, WEN Chuanjun, LI Zongtao. The Upper Bounds of the Third Hankel Determinant for Two Subclasses of Analytic Functions[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 118-122. DOI: 10.6054/j.jscnun.2024014

The Upper Bounds of the Third Hankel Determinant for Two Subclasses of Analytic Functions

More Information
  • Received Date: October 27, 2022
  • Available Online: April 29, 2024
  • Let H denote the family of all analytic functions with the form f(z)=z+a2z2+a3z3+ in the unit disk U={z:|z|<1}. Two subclasses of analytic functions STs and R(1/2) which are difined in the unit disk U are introduced, respectively, i.e., STs={f?H:Re2zf(z)f(z)f(z)>0,z?U},R(12)={f?H:Ref(z)z>12,z?U}. And the bounds of |H3,1(f)| for subfamilies of STs and R(1/2) are obtained.
  • [1]
    POMMERENKE C. On the coefficients and Hankel determinants of univalent functions[J]. Journal of the London Mathematical Society, 1966, 41(1): 111-122.
    [2]
    BABALOLA K O. On H3(1) Hankel determinant for some classes of univalent functions[J]. Inequality Theory and Applications, 2010, 6: 1-7.
    [3]
    ZAPRAWA P. Third Hankel determinants for subclasses of univalent functions[J]. Mediterranean Journal of Mathematics, 2017, 14: 19/1-19.
    [4]
    KOWALCZYK B, LECKO A, LECKO M, et al. The sharp bound of the third Hankel determinant for some classes of analytic functions[J]. Bulletin of the Korean Mathematical Society, 2018, 55(6): 1859-1868.
    [5]
    KOWALCZYK B, LECKO A, SIM Y J. The sharp bound of the Hankel determinant for starlike functions[J]. Forum Mathematicum, 2022, 34(5): 1249-1254.
    [6]
    张海燕, 汤获, 马丽娜. 某类解析函数的三阶Hankel行列式[J]. 华南师范大学学报(自然科学版), 2018, 50(4): 107-110. doi: 10.6054/j.jscnun.2018086

    ZHANG H Y, TANG H, MA L N. The third Hankel determinant for some class of analytic function[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(4): 107-110. doi: 10.6054/j.jscnun.2018086
    [7]
    KRISHNA VAMSHEE D, VENKATESWARLU B, RAMREDDY T. Third Hankel determinant for starlike and convex functions with respect to symmetric points[J]. Annales Universitatis Mariae Curie-Sklodowska Lublin-Polonia, 2016, LXX(1): 37-45.
    [8]
    GUO D, AO E, TANG H, et al. Third Hankel determinant for the inverse of starlike and convex functions[J]. Communications in Mathematical Research, 2019, 35(4): 354-358.
    [9]
    KOWALCZYK B, LECKO A, THOMAS D K. The sharp bound of the third Hankel determinant for convex functions of order -1/2[J]. Journal of Mathematical Inequalities, 2023, 17(1): 191-204.
    [10]
    GUO D, TANG H, ZHANG J, et al. Improved upper bounds of third-order Hankel determinant for Ozaki close-to convex functions[J]. Symmetry, 2023, 15: 1176/1-8.
    [11]
    SHI L, SHUTAYWI M, ALRESHIDI N, et al. The sharp bounds of the third-order Hankel determinant for certain analytic functions associated with an eight-shaped domain[J]. Fractal and Fractional, 2022, 6: 223/1-21.
    [12]
    ARI M, BARUKAB O M, KHAN S A, et al. The sharp bounds of Hankel determinants for families of three-leaf-type analytic functions[J]. Fractal and Fractional, 2022, 6: 219/1-35.
    [13]
    SAKAGUCHI K. On a certain univalent mapping[J]. Journal of the Mathematical Society of Japan, 1959, 11: 72-75.
    [14]
    RUSCHEWEYH S. Linear operators between class of prestarlike functions[J]. Commentarii Mathematici Helvetici, 1977, 52: 497-509.
    [15]
    POMMERENKE C. Univalent functions[M]. Göttingen: Vandenhoeck & Ruprecht, 1975.
    [16]
    LIBERA R J, ZLOTKIEWICZ E J. Early coefficients of the inverse of a regular convex functions[J]. Proceedings of the American Mathematical Society, 1982, 85(2): 225-230.
    [17]
    KWON O S, LECKO A, SIM Y J. On the fourth coefficient of functions in the Caratheodory class[J]. Computational Methods and Function Theory, 2018, 18: 307-314.
  • Cited by

    Periodical cited type(12)

    1. 黎明杰,蒋彬,郭晋川,潘越,蒋然,廖玉宏,张晓红,朱新海,陈子龙. 我国南方桉树人工林区水体泛黑物质分子组成及形成机理. 湖泊科学. 2024(04): 1069-1082 .
    2. 王娟,黄婷婷,赵辉,刘晓林,金平伟,史燕东. 华南典型林分迹地植被覆盖变化对土壤侵蚀的影响分析. 人民珠江. 2024(08): 48-56 .
    3. 孝惠爽,赵杰,傅声雷. 华南典型尾叶桉纯林经营对土壤理化性质、微生物和线虫群落的影响. 生态学报. 2023(19): 7963-7973 .
    4. 韦振道,伍琪,任世奇. 桉树人工林地表水土流失研究现状. 桉树科技. 2022(04): 63-68 .
    5. 任世奇,陈健波,朱原立,苏福聪,韦振道,伍琪. 尾巨桉人工林小流域降水产流特征分析. 生态环境学报. 2021(02): 305-312 .
    6. 朱雅,李一平,罗凡,李荣辉,黄列,程一鑫,蒋裕丰. 我国南方桉树人工林区水库沉积物污染物的分布特征及迁移规律. 环境科学. 2020(05): 2247-2256 .
    7. 蔡远松. 林木采伐作业对水土保持的影响及应对措施探讨. 亚热带水土保持. 2020(02): 51-52 .
    8. 李一平,罗凡,李荣辉,郭晋川. 桉树人工林区水体泛黑机理研究进展. 河海大学学报(自然科学版). 2019(05): 393-401 .
    9. 王一佩,薛雨,杨钙仁,苏晓琳,武鹏帅,温志良,邓羽松. 林道修建和采伐作业对桉树人工林土壤侵蚀的影响. 水土保持研究. 2019(06): 1-6 .
    10. 朱群华,钟昌琴,谌建宇,刘钢,赖后伟,宁寻安. 水源地桉树人工林林区水体潜在风险浅析. 净水技术. 2017(08): 26-31 .
    11. 赵庆,钱万惠,严俊,唐洪辉. 珠三角地区森林景观改造研究——以展旗岗森林景观改造为例. 林业与环境科学. 2016(04): 92-97 .
    12. 李相林,谢华,彭波,谢洲,杨瑞刚. 速生桉种植中氮素对饮用水源地水质的影响. 南方农业学报. 2016(11): 1849-1855 .

    Other cited types(1)

Catalog

    Article views (51) PDF downloads (21) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return