Citation: | GUO Dong, TANG Huo, WEN Chuanjun, LI Zongtao. The Upper Bounds of the Third Hankel Determinant for Two Subclasses of Analytic Functions[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 118-122. DOI: 10.6054/j.jscnun.2024014 |
[1] |
POMMERENKE C. On the coefficients and Hankel determinants of univalent functions[J]. Journal of the London Mathematical Society, 1966, 41(1): 111-122.
|
[2] |
BABALOLA K O. On H3(1) Hankel determinant for some classes of univalent functions[J]. Inequality Theory and Applications, 2010, 6: 1-7.
|
[3] |
ZAPRAWA P. Third Hankel determinants for subclasses of univalent functions[J]. Mediterranean Journal of Mathematics, 2017, 14: 19/1-19.
|
[4] |
KOWALCZYK B, LECKO A, LECKO M, et al. The sharp bound of the third Hankel determinant for some classes of analytic functions[J]. Bulletin of the Korean Mathematical Society, 2018, 55(6): 1859-1868.
|
[5] |
KOWALCZYK B, LECKO A, SIM Y J. The sharp bound of the Hankel determinant for starlike functions[J]. Forum Mathematicum, 2022, 34(5): 1249-1254.
|
[6] |
张海燕, 汤获, 马丽娜. 某类解析函数的三阶Hankel行列式[J]. 华南师范大学学报(自然科学版), 2018, 50(4): 107-110. doi: 10.6054/j.jscnun.2018086
ZHANG H Y, TANG H, MA L N. The third Hankel determinant for some class of analytic function[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(4): 107-110. doi: 10.6054/j.jscnun.2018086
|
[7] |
KRISHNA VAMSHEE D, VENKATESWARLU B, RAMREDDY T. Third Hankel determinant for starlike and convex functions with respect to symmetric points[J]. Annales Universitatis Mariae Curie-Sklodowska Lublin-Polonia, 2016, LXX(1): 37-45.
|
[8] |
GUO D, AO E, TANG H, et al. Third Hankel determinant for the inverse of starlike and convex functions[J]. Communications in Mathematical Research, 2019, 35(4): 354-358.
|
[9] |
KOWALCZYK B, LECKO A, THOMAS D K. The sharp bound of the third Hankel determinant for convex functions of order -1/2[J]. Journal of Mathematical Inequalities, 2023, 17(1): 191-204.
|
[10] |
GUO D, TANG H, ZHANG J, et al. Improved upper bounds of third-order Hankel determinant for Ozaki close-to convex functions[J]. Symmetry, 2023, 15: 1176/1-8.
|
[11] |
SHI L, SHUTAYWI M, ALRESHIDI N, et al. The sharp bounds of the third-order Hankel determinant for certain analytic functions associated with an eight-shaped domain[J]. Fractal and Fractional, 2022, 6: 223/1-21.
|
[12] |
ARI M, BARUKAB O M, KHAN S A, et al. The sharp bounds of Hankel determinants for families of three-leaf-type analytic functions[J]. Fractal and Fractional, 2022, 6: 219/1-35.
|
[13] |
SAKAGUCHI K. On a certain univalent mapping[J]. Journal of the Mathematical Society of Japan, 1959, 11: 72-75.
|
[14] |
RUSCHEWEYH S. Linear operators between class of prestarlike functions[J]. Commentarii Mathematici Helvetici, 1977, 52: 497-509.
|
[15] |
POMMERENKE C. Univalent functions[M]. Göttingen: Vandenhoeck & Ruprecht, 1975.
|
[16] |
LIBERA R J, ZLOTKIEWICZ E J. Early coefficients of the inverse of a regular convex functions[J]. Proceedings of the American Mathematical Society, 1982, 85(2): 225-230.
|
[17] |
KWON O S, LECKO A, SIM Y J. On the fourth coefficient of functions in the Caratheodory class[J]. Computational Methods and Function Theory, 2018, 18: 307-314.
|