Citation: | WEI Xuan, ZHANG Haoyi, ZHAO Chen, LI Kaicheng. Identification of Complex Power Quality Disturbances Based on Adaptive Weighted Hybrid Strategy Active Learning[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(6): 55-62. DOI: 10.6054/j.jscnun.2023078 |
To mitigate the annotation cost of Complex Power Quality Disturbances (CPQDs) data, a hybrid strategy active learning approach was employed along with Laplacian Extreme Learning Machine to identify CPQDs in power distribution networks. It combines different categories of active learning sampling strategies to select the most informative and representative CPQDs data for labeling. In the active learning process, the weights of different strategies are adaptively adjusted using a logarithmic function. To enhance classifier performance, a Laplacian manifold regularization was embeded into Extreme Learning Machine in both supervised and unsupervised frameworks. The proposed architecture is compared with state-of-the-art active learning algorithms on datasets generated through code synthesis and hardware, demonstrating superior performance of the proposed method.
[1] |
LIANG X D. Emerging power quality challenges due to integration of renewable energy sources[C]. 2016 IEEE Industry Applications Society Annual Meeting, Portland: 2016.
|
[2] |
黄建明, 瞿合祚, 李晓明. 基于短时傅里叶变换及其谱峭度的电能质量混合扰动分类[J]. 电网技术, 2016, 40(10): 3184-3191.
HUANG J M, QU H Z, LI X M. Classification for hybrid power quality disturbance based on STFT and its spectral kurtosis[J]. Power System Technology, 2016, 40(10): 3184-3191.
|
[3] |
徐艳春, 高永康, 李振兴, 等. 基于VMD初始化S变换的混合动力系统电能质量扰动检测与分类[J]. 中国电机工程学报, 2019, 39(16): 4786-4798.
XU Y C, GAO Y K, LI Z X, et al. Power quality disturbance detection and classification of hybrid power system based on VMD initialization S-transform[J]. Proceedings of the CSEE, 2019, 39(16): 4786-4798.
|
[4] |
吴建章, 梅飞, 郑建勇, 等. 基于改进经验小波变换和XGBoost的电能质量复合扰动分类[J]. 电工技术学报, 2022, 37(1): 232-243;253.
WU J Z, MEI F, ZHENG J Y, et al. Recognition of multiple power Quality disturbances based on modified empirical wavelet transform and XGBoost[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 232-243;253.
|
[5] |
郑戍华, 张宁宁, 王向周. 基于提升小波和Hilbert变换的暂态电能质量检测[J]. 北京理工大学学报, 2019, 39(2): 162-168.
ZHENG X H, ZHANG N N, WANG X Z. A lifting wavelet and Hilbert transform fusion method for transient power quality detection[J]. Transactions of Beijing Institute of Technology, 2019, 39(2): 162-168.
|
[6] |
薛正爱, 黄陈蓉, 张建德, 等. 基于小波变换和极限学习机的电能质量扰动分类[J]. 电工技术, 2020(15): 41-43.
|
[7] |
BISWAL M, DASH P. Detection and characterization of multiple power quality disturbances with a fast S-transform and decision tree based classifier[J]. Digital Signal Processing, 2013, 23(4): 1071-1083. doi: 10.1016/j.dsp.2013.02.012
|
[8] |
KUMAR R, SINGH B, SHAHANI D T, et al. Al-haddad, recognition of power-quality disturbances using S-transform-based ANN classifier and rule-based decision tree[J]. IEEE Transactions on Industry Applications, 2015, 51(2): 1249-1258. doi: 10.1109/TIA.2014.2356639
|
[9] |
SHAMACHURN H. Assessing the performance of a modified S-transform with probabilistic neural network, support vector machine and nearest neighhour classifiers for single and multiple power quality disturbances identification[J]. Neural Computing and Applications, 2019, 31(4): 1041-1060. doi: 10.1007/s00521-017-3136-z
|
[10] |
LUO Y, LI K, LI Y, et al. Three-layer bayesian network for classification of complex power quality disturbances[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 3997-4006. doi: 10.1109/TII.2017.2785321
|
[11] |
许立武, 李开成, 肖贤贵, 等. 基于深度前馈网络的电能质量复合扰动识别[J]. 电测与仪表, 2020, 57(1): 62-69;130.
|
[12] |
DASH P K, PRASAD E, JALLI R K, et al. Multiple power quality disturbances analysis in photovoltaic integrated direct current microgrid using adaptive morphological filter with deep learning algorithm[J]. Applied Energy, 2022, 309: 118454/1-17.
|
[13] |
ZHAO Y, SHI Z, ZHANG J, et al. A novel active learning framework for classification: using weighted rank aggregation to achieve multiple query criteria[J]. Pattern Recognition, 2019, 93: 581-602. doi: 10.1016/j.patcog.2019.03.029
|
[14] |
AGRAWAL A, TRIPATHI S, VARDHAN M. Active learning approach using a modified least confidence sampling strategy for named entity recognition[J]. Progress in Artificial Intelligence, 2021, 10(2): 113-128. doi: 10.1007/s13748-021-00230-w
|
[15] |
FREUND Y, SEUNG H S, SHAMIR E, et al. Selective sampling using the query by committee algorithm[J]. Machine Learning, 1997, 28(2/3): 133-168. doi: 10.1023/A:1007330508534
|
[16] |
JOSHI A J, PORIKLI F, PAPANIKOLOPOULOS N. Multi-class active learning for image classification[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009, 2372-2379.
|
[17] |
SENER O, SAVARESE S. Active learning for convolutional neural networks: a core-set approach[C]//International Conference on Learning Representations. Vancouver: OpenReview. net, 2018.
|
[18] |
CAI L, XU X, ZHANG L, et al. Exploring spatial diversity for region-based active learning[J]. IEEE Transactions on Image Processing, 2021, 30: 8702-8712. doi: 10.1109/TIP.2021.3120041
|
[19] |
SOUZA P V D C, LUGHOFER E. Online active learning for an evolving fuzzy neural classifier based on data density and specificity[J]. Neurocomputing, 2022, 512: 269-286.
|
[20] |
SHEN D, ZHANG J, SU J, et al. Multi-criteria-based active learning for named entity recognition[C]//Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics-ACL'04. Barcelona: Association for Computational Linguistics, 2004: 589-596.
|
[21] |
LUGHOFER E. Hybrid active learning for reducing the annotation effort of operators in classification systems[J]. Pattern Recognition, 2012, 45(2): 884-896. doi: 10.1016/j.patcog.2011.08.009
|
[22] |
EBERT S, FRITZ M, SCHIELE B. RALF: a reinforced active learning formulation for object class recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012.
|
[23] |
LI X, GUO Y. Adaptive active learning for image classification[C]//Computer Vision and Pattern Recognition (CVPR). Portland: IEEE, 2013.
|
[24] |
XU X, SHAN D, LI S, et al. Multi-label learning method based on ML-RBF and laplacian ELM[J]. Neurocomputing, 2019, 331: 213-219. doi: 10.1016/j.neucom.2018.11.018
|