Citation: | ZHAO Lingling, GAO Kai, HONG Mingli, WANG Fuchang. a-Weyl's Theorem and Property(R) for Operator Functions[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(5): 80-87. DOI: 10.6054/j.jscnun.2023066 |
The new judgements for which a-Weyl's theorem, property (R), both a-Weyl's theorem and property (R) hold are given. In additional, the necessary and sufficient conditions for operator functions to satisfy the a-Weyl's theorem, the property (R), both the a-Weyl's theorem and the property (R) are considered.
[1] |
WEYL H. Über beschränkte quadratische formen, deren differenz vollstetig ist[J]. Rendiconti del Circolo Matema-tico di Palermo, 1909, 27: 373-392. doi: 10.1007/BF03019655
|
[2] |
AIENA P, GUILLÉN J R, PEA P. Property(R) for boun-ded linear operators[J]. Mediterranean Journal of Mathema-tics, 2011, 8(4): 491-508. doi: 10.1007/s00009-011-0113-0
|
[3] |
AIENA P, APONTE E, GUILLÉN J R, et al. Property(R) under perturbations[J]. Mediterranean Journal of Mathematics, 2013, 10(1): 367-382. doi: 10.1007/s00009-012-0174-8
|
[4] |
BERKANI M, KACHAD M. New Browder and Weyl type theorems[J]. Bulletin of the Korean Mathematical Society, 2015, 52: 439-452. doi: 10.4134/BKMS.2015.52.2.439
|
[5] |
BAI Q M, HUANG J J, CHEN A. Weyl type theorem of 2×2 upper triangular operator matrices[J]. Journal of Mathe-matical Analysis and Applications, 2016, 434: 1065-1076. doi: 10.1016/j.jmaa.2015.09.061
|
[6] |
YANG L L, CAO X H. Property(UWΠ) for functions of operators and compact perturbations[J]. Mediterranean Journal of Mathematics, 2022, 19: 163/1-10.
|
[7] |
YANG L L, CAO X H. Property(R) for fuctions of opera-tor and its perturbations[J]. Mediterranean Journal of Mathematics, 2022, 19: 25/1-10. doi: 10.1007/s00009-022-02189-x
|
[8] |
JIA B T, FENG Y L. Property(R) under compact perturbations[J]. Mediterranean Journal of Mathematics, 2020, 17: 73/1-12.
|
[9] |
DONG J, CAO X H. Compact perturbations of both SVEP and Weyl's theorem for 3*3 upper triangular operator matrices[J]. Linear Multilinear Algebra, 2020, 68(10): 2020-2033. doi: 10.1080/03081087.2019.1567676
|
[10] |
AIENA P, CARPINTERO C. Weyl's theorem, a-Weyl's theorem and single valued extension property[J]. Extracta Mathematicae, 2005, 20: 25-41.
|
[11] |
TAYLOR A E. Theorems on ascent, descent, nullity and defect of linear operators[J]. Mathematische Annalen, 1966, 163(1): 18-49. doi: 10.1007/BF02052483
|
[12] |
CONWAY J B. A course in functional analysis[M]. New York: Springer, 1985.
|
[13] |
HARTE R E. Invertibility and singularity for bounded li-near operators[M]. New York: Dekker, 1988.
|
[14] |
RADJAVI H, ROSENTHAL P. Invariant subspaces Ⅱ[M]. Mineola: Dover Publications, 2003.
|
[15] |
RAKOČEVIĆ V. Semi-Fredholm operators with finite ascent or descent and perturbations[J]. Proceedings of the American Mathematical Society, 1995, 123(12): 3823-3825. doi: 10.1090/S0002-9939-1995-1286004-6
|