Citation: | ZHANG Han, OUYANG Junbin, ZHENG Rongjia, CAI Jiequan, GAO Yu. Fall Recognition Based on Multi-feature Learning Fusion Cascade Classification[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 110-118. DOI: 10.6054/j.jscnun.2023042 |
[1] |
KALACHE A, FU D, YOSHIDA S, et al. World health organisation global report on falls prevention in older age[R]. Geneva: World Health Organization, 2007.
|
[2] |
COSTA J E, ANDRADE R M D C, ROCHA L S, et al. Computational solutions for human falls classification[J]. IEEE Access, 2021, 9: 161590-161602. doi: 10.1109/ACCESS.2021.3132796
|
[3] |
徐甲栋, 陈强, 徐一雄, 等. 基于MEMS传感器的实时跌倒检测系统设计[J]. 传感器与微系统, 2022, 41(7): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202207020.htm
XU J D, CHEN Q, XU Y X, et al. Design of real time fall detection system based on MEMS sensor[J]. Transducer and Microsystem Technologies, 2022, 41(7): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202207020.htm
|
[4] |
赵珍珍, 董彦如, 曹慧, 等. 老年人跌倒检测算法的研究现状[J]. 计算机工程与应用, 2022, 58(5): 50-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202205005.htm
ZHAO Z Z, DONG Y R, CAO H, et al. Research status of elderly fall detection algorithms[J]. Computer Enginee-ring and Applications, 2022, 58(5): 50-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202205005.htm
|
[5] |
ANDO B, BAGLIO S, LOMBARDO C O, et al. A multisensor data-fusion approach for ADL and fall classification[J]. IEEE Transactions on Instrumentation & Mea-surement, 2016, 65(9): 1960-1967.
|
[6] |
YU M, GONG L, KOLLIAS S. Computer vision based fall detection by a convolutional neural network[C]//Proceedings of the 19th ACM International Conference on Multimodal Interaction. New York: ACM, 2017.
|
[7] |
SALEH M, JEANNES R L B. Elderly fall detection using wearable sensors: a low cost highly accurate algorithm[J]. IEEE Sensors Journal, 2019, 19(8): 3156-3164. doi: 10.1109/JSEN.2019.2891128
|
[8] |
ZURBUCHEN N, WILDE A, BRUEGGER P. A machine learning multi-class approach for fall detection systems based on wearable sensors with a study on sampling rates selection[J]. Sensors, 2021, 21(3): 938/1-23. doi: 10.3390/s21030938
|
[9] |
KWON S B, PARK J H, KWON C, et al. An energy-efficient algorithm for classification of fall types using a wearable sensor[J]. IEEE Access, 2019, 7: 31321-31329. doi: 10.1109/ACCESS.2019.2902718
|
[10] |
NANCY G, PANKAJ D K. An argumentation enabled decision making approach for fall activity recognition in social IoT based ambient assisted living systems[J]. Future Generation Computer Systems, 2021, 122: 82-97. doi: 10.1016/j.future.2021.04.005
|
[11] |
HARRIS A, TRUE H, HU Z, et al. Fall recognition using wearable technologies and machine learning algorithms[C]//2016 IEEE International Conference on Big Data. Washington: IEEE, 2016.
|
[12] |
裴利然, 姜萍萍, 颜国正. 基于支持向量机的跌倒检测算法研究[J]. 光学精密工程, 2017, 25(1): 182-188. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201701024.htm
PEI L R, JIANG P P, YAN G Z. Research on fall detection system based on support vector machine[J]. Optics and Precision Engineering, 2017, 25(1): 182-188. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201701024.htm
|
[13] |
HUSSAIN F, EHATISHAM-UL-HAQ M, AZAM M A, et al. Activity-aware fall detection and recognition based on wearable sensors[J]. IEEE Sensors Journal, 2019, 19(22): 4528-4536.
|
[14] |
SYED A S, KUMAR A, SIERRA-SOSA D, et al. Determining fall direction and severity using SVMs[C]//2020 IEEE International Symposium on Signal Processing and Information Technology. Louisville, Kentucky: IEEE, 2020.
|
[15] |
ANGELA S, LÓPEZ J, VARGAS-BONILLA J. SisFall: a fall and movement dataset[J]. Sensors, 2017, 17(12): 198-207. doi: 10.3390/s17010198
|
[16] |
PUTRA I, VESILO R. Window-size impact on detection rate of wearable-sensor-based fall detection using supervised machine learning[C]//2017 IEEE Life Sciences Conference. Sydney: IEEE, 2017.
|
[17] |
宁梓涵, 高熳祺, 陈志遥, 等. 后仰跌倒人体撞击加速度及冲量分析[J]. 医用生物力学, 2018, 33(6): 551-557. https://www.cnki.com.cn/Article/CJFDTOTAL-YISX201806014.htm
NING Z H, GAO M Q, CHEN Z Y, et al. Analysis on impact acceleration and impulse during backward falling[J]. Journal of Medical Biomechanics, 2018, 33(6): 551-557. https://www.cnki.com.cn/Article/CJFDTOTAL-YISX201806014.htm
|
[18] |
丁蕊, 汤庸, 曾伟铨, 等. 基于分类算法的潜在好友推荐系统[J]. 华南师范大学学报(自然科学版), 2017, 49(6): 124-128. doi: 10.6054/j.jscnun.2017169
DING R, TANG Y, ZENG W Q, et al. A potential friend recommendation system based on classification algorithm[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(6): 124-128. doi: 10.6054/j.jscnun.2017169
|
[19] |
何坚, 周明我, 王晓懿. 基于卡尔曼滤波与k-NN算法的可穿戴跌倒检测技术研究[J]. 电子与信息学报, 2017, 39(11): 2627-2634. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201711013.htm
HE J, ZHOU M W, WANG X Y. Wearable method for fall detection based on Kalman filter and k-NN algorithm[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2627-2634. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201711013.htm
|