• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
DONG Qizheng, TIAN Binglong, ZHANG Wenbo, HUANG Xinyi, HUANG Cheng. Study on Luminescence Properties and Stability of CsPbBr3/CMS-Na Starch[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 39-45. DOI: 10.6054/j.jscnun.2023034
Citation: DONG Qizheng, TIAN Binglong, ZHANG Wenbo, HUANG Xinyi, HUANG Cheng. Study on Luminescence Properties and Stability of CsPbBr3/CMS-Na Starch[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 39-45. DOI: 10.6054/j.jscnun.2023034

Study on Luminescence Properties and Stability of CsPbBr3/CMS-Na Starch

More Information
  • Received Date: May 22, 2022
  • Available Online: August 25, 2023
  • CsPbBr3/CMS-Na composites were synthesized by in-situ growth method for the first time. The crystal structure, morphology and luminescence properties of the samples were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and fluorescence spectrophotometer. The results show that the photoluminescence spectra of CsPbBr3/CMS-Na composites behave an ordered blue-shift of 518 to 502 nm. The fluorescence intensity is significantly increased, and the green light emission is brightest when the mass ratio of CsPbBr3 to CMS-Na is 1 ∶ 2. The CsPbBr3/CMS-Na composites show excellent stability, remaining 67.6% of the initial brightness after 21 d in air. The results have potential application value for CsPbBr3 quantum dots in the field of lighting and display.
  • [1]
    ZHANG D, YANG Y, BEKENSTEIN Y, et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions[J]. Journal of the American Chemical Society, 2016, 138(23): 7236-7239. doi: 10.1021/jacs.6b03134
    [2]
    VELDHUIS S A, BOIX P P, YANTARA N, et al. Perovskite materials for light-emitting diodes and lasers[J]. Advanced Materials, 2016, 28(32): 6804-6834. doi: 10.1002/adma.201600669
    [3]
    YAKUNIN S, PROTESESCU L, KRIEG F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide Perovskites[J]. Nature Communications, 2015, 6(1): 1-9.
    [4]
    PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide Perovskites (CsPb-X3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779
    [5]
    WOLF S, HOLOVSKY J, MOON S J, et al. Organometallic halide Perovskites: sharp optical absorption edge and its relation to photovoltaic performance[J]. The Journal of Physical Chemistry Letters, 2014, 5(6): 1035-1039. doi: 10.1021/jz500279b
    [6]
    GUIJARRO N, YAO L, FORMAL F, et al. Lead halide Perovskite Quantum Dots to enhance the power conversion efficiency of organic solar cells[J]. Angewandte Chemie, 2019, 131(36): 12826-12834. doi: 10.1002/ange.201906803
    [7]
    YOON H C, KANG H, LEE S, et al. Study of Perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance[J]. ACS Applied Materials & Interfaces, 2016, 8(28): 18189-18200.
    [8]
    XUAN T, HUANG J, LIU H, et al. Super-hydrophobic cesium lead halide Perovskite Quantum Dot-polymer composites with high stability and luminescent efficiency for wide color gamut white light-emitting diodes[J]. Chemistry of Materials, 2019, 31(3): 1042-1047. doi: 10.1021/acs.chemmater.8b04596
    [9]
    徐妍, 曹蒙蒙, 夏超, 等. 全无机铯铅卤钙钛矿稳定性的研究进展[J]. 聊城大学学报(自然科学版), 2019, 32(1): 69-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TALK201901011.htm

    XU Y, CAO M, XIA C, et al. Research progress on the stability of all-Inorganic CsPbX3 Perovskites nanocrystals[J]. Liaocheng University, 2019, 32: 69-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TALK201901011.htm
    [10]
    ZHANG Q, LI Z, LIU M, et al. Bifunctional passivation strategy to achieve stable CsPbBr3 nanocrystals with drastically reduced thermal-quenching[J]. The Journal of Physical Chemistry Letters, 2020, 11(3): 993-999. doi: 10.1021/acs.jpclett.9b03389
    [11]
    WEI Y, CHENG Z, LIN J. An overview on enhancing the stability of lead halide Perovskite Quantum Dots and their applications in phosphor-converted LEDs[J]. Chemical Society Reviews, 2019, 48(1): 310-350. doi: 10.1039/C8CS00740C
    [12]
    BEGUM R, CHIN X Y, DAMODARAN B, et al. Cesium lead halide Perovskite nanocrystals prepared by anion exchange for Light-Emitting Diodes[J]. ACS Applied Nano Materials, 2020, 3(2): 1766-1774. doi: 10.1021/acsanm.9b02450
    [13]
    JENA A K, KULKARNI A, MIYASAKA T. Halide Perovskite photovoltaics: background, status, and future prospects[J]. Chemical Reviews, 2019, 119(5): 3036-3103. doi: 10.1021/acs.chemrev.8b00539
    [14]
    HUANG D, BO J, ZHENG R, et al. Luminescence and stability enhancement of CsPbBr3 Perovskite Quantum Dots through surface sacrificial coating[J]. Advanced Optical Materials, 2021, 9(16): 2100474/1-9.
    [15]
    WOO J Y, KIM Y, BAE J, et al. Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation[J]. Chemistry of Materials, 2017, 29(17): 7088-7092. doi: 10.1021/acs.chemmater.7b02669
    [16]
    LI Y, LV Y, GUO Z, et al. One-step preparation of long-term stable and flexible CsPbBr3 Perovskite Quantum Dots/ethylene vinyl acetate copolymer composite films for white Light-Emitting Diodes[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15888-15894.
    [17]
    WANG Z, FU R, LI F, et al. One-step polymeric melt encapsulation method to prepare CsPbBr3 Perovskite Quantum Dots/Polymethyl Methacrylate Composite with High Performance[J]. Advanced Functional Materials, 2021, 31(22): 2010009/1-13.
    [18]
    ALMORA O, MATT G J, THESE A, et al. Surface versus bulk currents and ionic space-charge effects in CsPbBr3 single crystals[J]. The Journal of Physical Chemistry Letters, 2022, 13: 3824-3830. doi: 10.1021/acs.jpclett.2c00804
    [19]
    LIU C, LIU Y, DENG H, et al. High Quantum yield and well-dispersed Quantum Dots luminescent composite through sodium carboxymethyl starch[J]. Luminescence, 2019, 34(2): 200-204. doi: 10.1002/bio.3594
    [20]
    KITTIPONGPATANA O S, SIRITHUNYALUG J, LAENGER R. Preparation and physicochemical properties of sodium carboxymethyl mungbean starches[J]. Carbohydrate Polymers, 2006, 63(1): 105-112. doi: 10.1016/j.carbpol.2005.08.024
    [21]
    KACZMARSKA K, BOBROWSKI A, YMANKOWSKA-KUMON S, et al. Studies on the gases emission under high temperature condition from moulding sands bonded by modified starch CMS-Na[J]. Archives of Foundry Engineering, 2017, 17: 13-16.
    [22]
    LI B, ZHANG Y, XU Y, et al. Design optimization of CsPbBr3 nanocrystals into zeolite Beta composites as ultra-stable green emitters for backlight display applications[J]. Journal of Materials Chemistry C, 2021, 9(36): 12118-12123. doi: 10.1039/D1TC02757C
    [23]
    GONG Z, ZHENG W, GAO Y, et al. Full-spectrum persistent luminescence tuning using all-inorganic Perovskite Quantum Dots[J]. Angewandte Chemie, 2019, 131(21): 7017-7021.
    [24]
    LI S, DING H, CAI H, et al. Realizing CsPbBr3 light-emitting diode arrays based on PDMS template confined solution growth of single-crystalline Perovskite[J]. The Journal of Physical Chemistry Letters, 2020, 11(19): 8275-8282.
    [25]
    陈长锋, 郑懿, 方朝龙. 微透镜阵列结构膜提高CsPbBr3量子点薄膜发光效率及其稳定性[J]. 中国激光, 2021, 48(13): 1313001/1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202113023.htm

    CHEN C F, ZHENG Y, FANG C L. Improvement of luminescence efficiency and stability of CsPbBr2 Quantum Dot films with microlens array structure[J]. Chinese Journal of Lsaers, 2021, 48(13): 1313001/1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202113023.htm

Catalog

    Article views (160) PDF downloads (107) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return