• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHANG Aihua, SHI Mengfan, DUAN Jingbang, WANG Chongguang, ZHU Liang. Electro-explosive Properties of Ni-Fe Wire and Preparation of Ultra-fine Powder[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(2): 41-48. DOI: 10.6054/j.jscnun.2023018
Citation: ZHANG Aihua, SHI Mengfan, DUAN Jingbang, WANG Chongguang, ZHU Liang. Electro-explosive Properties of Ni-Fe Wire and Preparation of Ultra-fine Powder[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(2): 41-48. DOI: 10.6054/j.jscnun.2023018

Electro-explosive Properties of Ni-Fe Wire and Preparation of Ultra-fine Powder

More Information
  • Received Date: January 03, 2022
  • Available Online: June 13, 2023
  • To prepare Ni-Fe ultrafine powder with good sphericity and high purity, a non-contact wire electrical explosion powder making device was used to conduct experiments, which were carried out in an argon atmosphere using 0.4 mm diameter Ni-Fe wire at different charging voltages. Simultaneously collecting and analyzing the waveform of electrical explosion discharge of Ni-Fe wire and the variation pattern of deposition energy. A time-varying nonlinear resistance model of Ni-Fe wire electrical explosion is developed and compared with the experimental curve for analysis to investigate the mechanism of Ni-Fe wire electrical explosion. The powder morphology is observed by scanning electron microscope to investigate the effect of Ni-Fe wire electrical explosion process parameters on powder morphology and particle size. The results show that the wire voltage, deposition energy and discharge circuit current peak gradually increase with the increase of charging voltage, and the breakdown moment along the surface is gradually advanced. The wire resistance model can reflect the actual resistance change, and the degree of compliance with the experimental curve is good. Superfine powder with good sphericity, uniform particle size distribution and high purity can be produced under the process parameters of charging voltage of 11-15 kV.
  • [1]
    张勉团. 铁镍磁粉芯的制备工艺及磁性能研究[D]. 南昌: 南昌大学, 2021.

    ZHANG M T. Preparation process and magnetic properties of Fe-Ni magnetic powder cores[D]. Nanchang: Nanchang University, 2021.
    [2]
    先琛, 刘国钊, 孔辉, 等. 流态化气相沉积温度对FeNi50/SiO2复合粉末形成过程及性能影响[J]. 粉末冶金工业, 2020, 30(5): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG202005004.htm

    XIAN C, LIU G Z, KONGH, et al. Influence of fluidized vapor deposition temperature on the formation process and properties of FeNi50/SiO2 composite powder[J]. Powder Metallurgy Industry, 2020, 30(5): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG202005004.htm
    [3]
    张永民, 姚伟博, 邱爱慈, 等. 金属丝电爆炸现象研究综述[J]. 高电压技术, 2019, 45(8): 2668-2680. doi: 10.13336/j.1003-6520.hve.20180615006

    ZHANG Y M, YAO W B, QIU A C, et al. A review of the research on electrical explosion phenomenon of metal wires[J]. High Voltage Technology, 2019, 45(8): 2668-2680. doi: 10.13336/j.1003-6520.hve.20180615006
    [4]
    朱岩岩. NiFe2O4/FeNi复合材料的制备及性能研究[D]. 淮南: 安徽理工大学, 2018.

    ZHU Y Y. Preparation and performance study of NiFe2O4/FeNi composites[D]. Huainan: Anhui University of Technology, 2018.
    [5]
    姚永林. 超细FeNi合金粉热分解法制备及其吸波性能研究[D]. 长沙: 中南大学, 2014.

    YAO Y L. Preparation of ultrafine FeNi alloy powder by thermal decomposition and its wave absorption performance[D]. Changsha: Zhongnan University, 2014.
    [6]
    李国君. 镍铁合金复合材料的制备以及在高频领域中的应用[D]. 天津: 天津大学, 2017.

    LI G J. Preparation of Ni-Fe alloy composites and their application in high frequency field[D]. Tianjin: Tianjin University, 2017.
    [7]
    刘奇正, 孟庆平, 戎咏华, 等. 机械合金化工艺对Fe-Ni合金显微结构的影响[J]. 上海交通大学学报, 2004(10): 1682-1685; 1690. doi: 10.3321/j.issn:1006-2467.2004.10.019

    LIU Q Z, MENG Q P, RONG Y H, et al. Effect of mechanical alloying process on the micro structure of Fe-Ni alloys[J]. Journal of Shanghai Jiaotong University, 2004(10): 1682-1685; 1690. doi: 10.3321/j.issn:1006-2467.2004.10.019
    [8]
    卢慧芳. 纳米FeNi合金粉体的制备及其性能研究[D]. 南昌: 南昌大学, 2014.

    LU H F. Preparation of nano-FeNi alloy powder and its performance study[D]. Nanchang: Nanchang University, 2014.
    [9]
    GAO Y, LI Z Y, JIN D, et al. Preparation and characte-rization of nano-Fe50Ni50 alloy powder by chemical Co-precipitation hydrogen reducing process[J]. Integrated Ferroelectrics, 2011, 128(1): 54-58. doi: 10.1080/10584587.2011.576187
    [10]
    李胜楠, 兰元飞, 李国平, 等. 镍铁石墨烯基复合纳米材料的制备及其对高氯酸铵的催化分解性能[J]. 火炸药学报, 2021, 44(6): 782-788.

    LI S N, LAN Y F, LI G P, et al. Preparation of Ni-Fe graphene-based composite nanomaterials and their catalytic decomposition performance on ammonium perchlorate[J]. Journal of Fire Explosives, 2021, 44(6): 782-788.
    [11]
    ZHOU H, ZHANG H, LAI C G, et al. Rapidly electrodeposited NiFe(OH)x as the catalyst for oxygen evolution reaction[J]. Inorganic Chemistry Communications, 2022, 139: 109350/1-8.
    [12]
    李晨, 王泓镔, 杨硕, 等. 垂直石墨烯负载镍铁纳米颗粒的制备及其析氧性能[J]. 科学通报, 2022, 67(24): 2950-2957. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202224010.htm

    LI C, WANG H B, YANG S, et al. Preparation of vertical graphene-loaded Ni-Fe nanoparticles and their oxygen precipitation properties[J]. Science Bulletin, 2022, 67(24): 2950-2957. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202224010.htm
    [13]
    刘超鹏, 甘云丹, 李旭东, 等. 面向量产的氩气中铝丝电爆炸及纳米颗粒粒径分布特性[J]. 高电压技术, 2021, 47(5): 1857-1865. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202105036.htm

    LIU C P, GAN Y D, LI X D, et al. Characterization of electrical explosion and nanoparticle size distribution of aluminum wires in argon gas for mass production[J]. High Voltage Technology, 2021, 47(5): 1857-1865. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202105036.htm
    [14]
    韩若愚, 李柳霞, 钱盾, 等. 液体中金属丝电爆炸的研究现状与展望[J]. 高电压技术, 2021, 47(3): 766-777. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202103002.htm

    HAN R Y, LI L X, QIAN D, et al. Current status and prospects of research on electric explosion of metal wires in liquids[J]. High Voltage Technology, 2021, 47(3): 766-777. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202103002.htm
    [15]
    张江波, 肖霞, 赵煜华, 等. 铜丝钛丝电爆炸对硝胺发射药的点火特性[J]. 火工品, 2022(5): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HGPI202205006.htm

    ZHANG J B, XIAO X, ZHAO Y H, et al. Ignition characteristics of copper wire and titanium wire electric explosions on nitramine launch charges[J]. Pyrotechnics, 2022(5): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HGPI202205006.htm
    [16]
    吴坚, 石桓通, 蔡金, 等. 气氛中金属丝电爆炸特性及其在纳米粉体制备中的应用进展[J]. 火炸药学报, 2021, 44(6): 735-744. https://www.cnki.com.cn/Article/CJFDTOTAL-BGXB202106015.htm

    WU J, SHI H, CAI J, et al. Progress of electro-explosive properties of metal wires in atmosphere and its application in nano-powder preparation[J]. Journal of Pyrotechnics, 2021, 44(6): 735-744. https://www.cnki.com.cn/Article/CJFDTOTAL-BGXB202106015.htm
    [17]
    于红新, 冉汉政, 杜涛, 等. 基于电流密度的分段计算电爆炸模型研究[J]. 高压物理学报, 2018, 32(6): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201806003.htm

    YU H X, RAN H Z, DU T, et al. Research on segmental calculation of electric explosion model based on current density[J]. Journal of High Voltage Physics, 2018, 32(6): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201806003.htm
    [18]
    张军晖. 气体火花开关放电动态仿真及实验研究[D]. 南京: 南京农业大学, 2013.

    ZHANG J H. Dynamic simulation and experimental study of gas spark switch discharge[D]. Nanjing: Nanjing Agricultural University, 2013.
    [19]
    高景明, 刘永贵, 殷毅, 等. 气体火花开关放电的数值模拟[J]. 强激光与粒子束, 2007, 19(6): 1039-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200706038.htm

    GAO J M, LIU Y G, YIN Y, et al. Numerical simulation of gas spark switching discharge[J]. Strong Laser and Particle Beam, 2007, 19(6): 1039-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200706038.htm
    [20]
    李兴文, 晁攸闯, 吴坚, 等. 氩气中铝金属丝电爆炸放电电流波形的研究[J]. 高电压技术, 2015, 41(9): 2888-2894. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201509011.htm

    LI X W, CHAO Y C, WU J, et al. Study of electric explosion discharge current waveform of aluminum wire in argon gas[J]. High Voltage Technology, 2015, 41(9): 2888- 2894. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201509011.htm
    [21]
    SONG F L, LI F, ZHANG B Z, et al. Electrode erosion and lifetime performance of a compact and repetitively triggered field distortion spark gap switch[J]. IEEE Transactions on Plasma Science, 2020, 48: 212-218.
    [22]
    薛鹏. 高功率气体火花间隙开关的研究[D]. 上海: 上海交通大学, 2018.

    XUE P. Research on high power gas spark gap switch[D]. Shanghai: Shanghai Jiaotong University, 2018.
    [23]
    姚伟博, 杨海亮, 徐海斌, 等. 超长金属丝电爆炸等离子体的轴向光辐射均匀性[J]. 高电压技术, 2022, 48(12): 5102-5109. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202212042.htm

    YAO W B, YANG H L, XU H B, et al. Homogeneity of axial optical radiation in the electro-explosive plasma of ultra-long metal wires[J]. High Voltage Technology, 2022, 48(12): 5102-5109. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202212042.htm
    [24]
    BENNETT F D. Initial heating rates and energy inputs for exploding wires[J]. The Physics of Fluids, 1964, 7(1): 147-148.
    [25]
    BENNETT F D. Nonlinear equations for circuits containing exploding wires[J]. The Physics of Fluids, 1966, 9(3): 471-477.
    [26]
    HOBSON A, MANKA C K. Premelt variation of current temperature and resistance in exploding wires[J]. Journal of Applied Physics, 1966, 37(4): 1897-1901.

Catalog

    Article views (130) PDF downloads (79) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return