Citation: | ZHOU Jiaying, LI Shuangpeng, XIAO Huang, GAO Yun, XIA Xiaohong. Study on Pseudocapacitance of Embedded Cobalt Tetroxide Anode Materials[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(2): 1-9. DOI: 10.6054/j.jscnun.2023013 |
[1] |
赵杰, 李朝林, 陈刚, 等. 多孔Ti3C2Tx/SnSe复合材料的制备及其储钾性能[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 28-33. doi: 10.6054/j.jscnun.2021089
ZHAO J, LI C L, CHEN G, et al. The synthesis of porous Ti3C2Tx/SnSe composite and its potassium storage performance[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 28-33. doi: 10.6054/j.jscnun.2021089
|
[2] |
ZHANG X, WANG D, QIU X, et al. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation[J]. Nature Communications, 2020, 11(1): 1-9. doi: 10.1038/s41467-019-13993-7
|
[3] |
HUANG Y, FANG Y, LU X F, et al. Co3O4 Hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage[J]. Angewandte Chemie International Edition, 2020, 59(45): 19914-19918. doi: 10.1002/anie.202008987
|
[4] |
ZHU G, WANG L, LIN H, et al. Walnut-like multicore-shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(18): 1800003/1-7.
|
[5] |
ZHAO B, LIU Q, CHEN Y, et al. Interface-induced pseudo-capacitance in nonporous heterogeneous particles for high volumetric sodium storage[J]. Advanced Functional Materials, 2020, 30(42): 2002019/1-8.
|
[6] |
ZOU Y, ZHANG W, CHEN N, et al. Generating oxygen vacancies in MnO hexagonal sheets for ultralong life lithium storage with high capacity[J]. ACS Nano, 2019, 13(2): 2062-2071.
|
[7] |
LIN J, ZENG C, LIN X, et al. Metal-organic framework-derived hierarchical MnO/Co with oxygen vacancies toward elevated-temperature Li-ion battery[J]. ACS Nano, 2021, 15(3): 4594-4607. doi: 10.1021/acsnano.0c08808
|
[8] |
HOU C, HOU Y, FAN Y, et al. Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes high-performance Li-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(16): 6967-6976. doi: 10.1039/C8TA00975A
|
[9] |
FLEISCHMANN S, MITCHELL J B, WANG R, et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials[J]. Chemical Reviews, 2020, 120(14): 6738-6782. doi: 10.1021/acs.chemrev.0c00170
|
[10] |
JIANG Y, LIU J. Definitions of pseudocapacitive materials: a brief review[J]. Energy and Environmental Materials, 2019, 2(1): 30-37. doi: 10.1002/eem2.12028
|
[11] |
LI Q, LI H, XIA Q, et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry[J]. Nature Materials, 2021, 20(1): 76-83. doi: 10.1038/s41563-020-0756-y
|
[12] |
WANG L, WANG Z, XIE L, et al. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries[J]. ACS Applied Materials and Interfaces, 2019, 11(18): 16619-16628. doi: 10.1021/acsami.9b03365
|
[13] |
HADJIEV V, ILIEV M, VERGILOV I. The raman spectra of Co3O4[J]. Journal of Physics C: Solid State Physics, 1988, 21(7): 199-201. doi: 10.1088/0022-3719/21/7/007
|
[14] |
HUA L, HUI Z, SUN Y, et al. Oxygen vacancy enriched hollow cobaltosic oxide frames with ultrathin walls for efficient energy storage and biosensing[J]. Nanoscale, 2018, 10(45): 21006-21012. doi: 10.1039/C8NR07444E
|
[15] |
KANG Y, ZHANG Y H, SHI Q, et al. Highly efficient Co3O4/CeO2 heterostructure as anode for lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2021, 585: 705-715. doi: 10.1016/j.jcis.2020.10.050
|
[16] |
ZENG Y, LAI Z, HAN Y, et al. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries[J]. Advanced Materials, 2018, 30(33): 1802396/1-8.
|
[17] |
ZHAI X Z, QU J, WANG J, et al. Diffusion-driven fabrication of yolk-shell structured K-birnessite@mesoporous carbon nanospheres with rich oxygen vacancies for high-energy and high-power zinc-ion batteries[J]. Energy Storage Materials, 2021, 42: 753-763. doi: 10.1016/j.ensm.2021.08.021
|
[18] |
KIM H, CHOI W, YOON J, et al. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries[J]. Chemical Reviews, 2020, 120(14): 6934-6976. doi: 10.1021/acs.chemrev.9b00618
|
[19] |
CHOI C, ASHBY D S, BUTTS D M, et al. Achieving high energy density and high power density with pseudocapacitive materials[J]. Nature Reviews Materials, 2020, 5(1): 5-19.
|
[20] |
PU X, ZHAO D, FU C, et al. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves[J]. Angewandte Chemie International Edition, 2021, 60(39): 21310-21318. doi: 10.1002/anie.202104167
|
[21] |
BALOGUN M S, YANG H, LUO Y, et al. Achieving high gravimetric energy density for flexible lithium-ion batte-ries facilitated by core-double-shell electrodes[J]. Energy and Environmental Science, 2018, 11(7): 1859-1869.
|
1. |
何景婷,祁贵生,杨琨,纪财利,贾裕胜,郭豫晋,张蓉蓉,李宁,王雅宁,曾中宇,樊小龙. 低结晶度B-Co_3O_4纳米颗粒电催化硝酸盐还原合成氨. 华南师范大学学报(自然科学版). 2024(01): 36-43 .
![]() |