• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHOU Jiaying, LI Shuangpeng, XIAO Huang, GAO Yun, XIA Xiaohong. Study on Pseudocapacitance of Embedded Cobalt Tetroxide Anode Materials[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(2): 1-9. DOI: 10.6054/j.jscnun.2023013
Citation: ZHOU Jiaying, LI Shuangpeng, XIAO Huang, GAO Yun, XIA Xiaohong. Study on Pseudocapacitance of Embedded Cobalt Tetroxide Anode Materials[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(2): 1-9. DOI: 10.6054/j.jscnun.2023013

Study on Pseudocapacitance of Embedded Cobalt Tetroxide Anode Materials

More Information
  • Received Date: April 06, 2022
  • Available Online: June 13, 2023
  • The embedded Co3O4/CC flexible self-supporting anode material was prepared by using ZIF-67 as self-sacrificing template. Due to the interlaced conductive network structure and the existence of Co3O4 oxygen defect in carbon fabric matrix, the lithium ion transport is accelerated and the structural stability is improved. The Co3O4/CC anode material shows excellent battery performance, and the discharge specific capacity can still reach 518 mAh/g after 1 000 cycles at 5 A/g high current density. The high capacitance of Co3O4/CC anode is mainly due to pseudocapacitance effect, and the presence of pseudocapacitance is supported by ultra-fast surface/near-surface REDOX reaction detected by in-situ Raman spectroscopy.
  • [1]
    赵杰, 李朝林, 陈刚, 等. 多孔Ti3C2Tx/SnSe复合材料的制备及其储钾性能[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 28-33. doi: 10.6054/j.jscnun.2021089

    ZHAO J, LI C L, CHEN G, et al. The synthesis of porous Ti3C2Tx/SnSe composite and its potassium storage performance[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 28-33. doi: 10.6054/j.jscnun.2021089
    [2]
    ZHANG X, WANG D, QIU X, et al. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation[J]. Nature Communications, 2020, 11(1): 1-9. doi: 10.1038/s41467-019-13993-7
    [3]
    HUANG Y, FANG Y, LU X F, et al. Co3O4 Hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage[J]. Angewandte Chemie International Edition, 2020, 59(45): 19914-19918. doi: 10.1002/anie.202008987
    [4]
    ZHU G, WANG L, LIN H, et al. Walnut-like multicore-shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(18): 1800003/1-7.
    [5]
    ZHAO B, LIU Q, CHEN Y, et al. Interface-induced pseudo-capacitance in nonporous heterogeneous particles for high volumetric sodium storage[J]. Advanced Functional Materials, 2020, 30(42): 2002019/1-8.
    [6]
    ZOU Y, ZHANG W, CHEN N, et al. Generating oxygen vacancies in MnO hexagonal sheets for ultralong life lithium storage with high capacity[J]. ACS Nano, 2019, 13(2): 2062-2071.
    [7]
    LIN J, ZENG C, LIN X, et al. Metal-organic framework-derived hierarchical MnO/Co with oxygen vacancies toward elevated-temperature Li-ion battery[J]. ACS Nano, 2021, 15(3): 4594-4607. doi: 10.1021/acsnano.0c08808
    [8]
    HOU C, HOU Y, FAN Y, et al. Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes high-performance Li-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(16): 6967-6976. doi: 10.1039/C8TA00975A
    [9]
    FLEISCHMANN S, MITCHELL J B, WANG R, et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials[J]. Chemical Reviews, 2020, 120(14): 6738-6782. doi: 10.1021/acs.chemrev.0c00170
    [10]
    JIANG Y, LIU J. Definitions of pseudocapacitive materials: a brief review[J]. Energy and Environmental Materials, 2019, 2(1): 30-37. doi: 10.1002/eem2.12028
    [11]
    LI Q, LI H, XIA Q, et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry[J]. Nature Materials, 2021, 20(1): 76-83. doi: 10.1038/s41563-020-0756-y
    [12]
    WANG L, WANG Z, XIE L, et al. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries[J]. ACS Applied Materials and Interfaces, 2019, 11(18): 16619-16628. doi: 10.1021/acsami.9b03365
    [13]
    HADJIEV V, ILIEV M, VERGILOV I. The raman spectra of Co3O4[J]. Journal of Physics C: Solid State Physics, 1988, 21(7): 199-201. doi: 10.1088/0022-3719/21/7/007
    [14]
    HUA L, HUI Z, SUN Y, et al. Oxygen vacancy enriched hollow cobaltosic oxide frames with ultrathin walls for efficient energy storage and biosensing[J]. Nanoscale, 2018, 10(45): 21006-21012. doi: 10.1039/C8NR07444E
    [15]
    KANG Y, ZHANG Y H, SHI Q, et al. Highly efficient Co3O4/CeO2 heterostructure as anode for lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2021, 585: 705-715. doi: 10.1016/j.jcis.2020.10.050
    [16]
    ZENG Y, LAI Z, HAN Y, et al. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries[J]. Advanced Materials, 2018, 30(33): 1802396/1-8.
    [17]
    ZHAI X Z, QU J, WANG J, et al. Diffusion-driven fabrication of yolk-shell structured K-birnessite@mesoporous carbon nanospheres with rich oxygen vacancies for high-energy and high-power zinc-ion batteries[J]. Energy Storage Materials, 2021, 42: 753-763. doi: 10.1016/j.ensm.2021.08.021
    [18]
    KIM H, CHOI W, YOON J, et al. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries[J]. Chemical Reviews, 2020, 120(14): 6934-6976. doi: 10.1021/acs.chemrev.9b00618
    [19]
    CHOI C, ASHBY D S, BUTTS D M, et al. Achieving high energy density and high power density with pseudocapacitive materials[J]. Nature Reviews Materials, 2020, 5(1): 5-19.
    [20]
    PU X, ZHAO D, FU C, et al. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves[J]. Angewandte Chemie International Edition, 2021, 60(39): 21310-21318. doi: 10.1002/anie.202104167
    [21]
    BALOGUN M S, YANG H, LUO Y, et al. Achieving high gravimetric energy density for flexible lithium-ion batte-ries facilitated by core-double-shell electrodes[J]. Energy and Environmental Science, 2018, 11(7): 1859-1869.
  • Cited by

    Periodical cited type(1)

    1. 何景婷,祁贵生,杨琨,纪财利,贾裕胜,郭豫晋,张蓉蓉,李宁,王雅宁,曾中宇,樊小龙. 低结晶度B-Co_3O_4纳米颗粒电催化硝酸盐还原合成氨. 华南师范大学学报(自然科学版). 2024(01): 36-43 .

    Other cited types(3)

Catalog

    Article views (2098) PDF downloads (529) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return