Citation: | CHEN Minrong, PENG Junjie, ZENG Guoqiang. 3D Skeleton-based Human Action Recognition Based on Multi-stream Fusion Network[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 94-101. DOI: 10.6054/j.jscnun.2023009 |
[1] |
钱慧芳, 易剑平, 付云虎. 基于深度学习的人体动作识别综述[J]. 计算机科学与探索, 2021, 15(3): 438-455. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202103004.htm
QIAN H F, YI J P, FU Y H. Review of human action recognition based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 438-455. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202103004.htm
|
[2] |
牛雨晴, 苏维均, 于重重, 等. 基于TX2环境的智能监控实时行为识别[J]. 信息技术与信息化, 2021(4): 243-245. doi: 10.3969/j.issn.1672-9528.2021.04.079
|
[3] |
张庆宾, 丁娜娜, 吴海波. 基于BP神经网络的摔倒动作识别方法[J]. 指挥信息系统与技术, 2021, 12(1): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXT202101011.htm
ZHANG Q B, DING N N, WU H B. Fall recognition method based on BP neural network[J]. Command Information System and Technology, 2021, 12(1): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXT202101011.htm
|
[4] |
JOHANSSON G. Visual perception of biological motion and a model for its analysis[J]. Perception & Psycho-physics, 1973, 14(2): 201-211.
|
[5] |
SHAHROUDY A, LIU J, NG T T, et al. NTU RGB+d: a large scale dataset for 3D human activity analysis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1010-1019.
|
[6] |
ZHANG P, LAN C, XING J, et al. View adaptive neural networks for high performance Skeleton-based human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1963-1978. doi: 10.1109/TPAMI.2019.2896631
|
[7] |
DU Y, FU Y, WANG L. Skeleton based action recognition with convolutional neural network[C]//Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition. Kuala Lumpur: IEEE, 2015: 579-583.
|
[8] |
LI C, ZHONG Q, XIE D, et al. Co-occurrence feature learning from Skeleton data for action recognition and detection with hierarchical aggregation[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm: IJCAI, 2018: 786-792.
|
[9] |
SU H, CHANG Z, YU M, et al. Convolutional neural network with adaptive inferential framework for Skeleton-based action recognition[J]. Journal of Visual Communication and Image Representation, 2020, 73: 102925/1-8.
|
[10] |
YAN S, XIONG Y, LIN D. Spatial temporal graph convolutional networks for Skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018: 7444-7452.
|
[11] |
LI M, CHEN S, CHEN X, et al. Actional-structural graph convolutional networks for Skeleton-based action recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3595-3603.
|
[12] |
CHENG K, ZHANG Y, HE X, et al. Skeleton-based action recognition with shift graph convolutional network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 183-192.
|
[13] |
LIU J, SHAHROUDY A, PEREZ M, et al. NTU RGB+d 120: a large-scale benchmark for 3D human activity understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(10): 2684-2701.
|
[14] |
WANG H, WANG L. Modeling temporal dynamics and spatial configurations of actions using two-stream recurrent neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 499-508.
|
[15] |
SONG S, LAN C, XING J, et al. An end-to-end spatio-temporal attention model for human action recognition from Skeleton data[C]//Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017: 4263-4270.
|
[16] |
LEE I, KIM D, KANG S, et al. Ensemble deep learning for Skeleton-based action recognition using temporal sliding LSTM networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 1012-1020.
|
[17] |
ZHAO R, WANG K, SU H, et al. Bayesian graph convolution LSTM for Skeleton based action recognition[C]//Proceedings of the IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 6882-6892.
|
[18] |
SHI L, ZHANG Y, CHENG J, et al. Two-stream adaptive graph convolutional networks for Skeleton-based action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 12026-12035.
|
[19] |
SHI L, ZHANG Y, CHENG J, et al. Skeleton-based action recognition with directed graph neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7912-7921.
|
[20] |
PENG W, HONG X, CHEN H, et al. Learning graph con-volutional network for Skeleton-based human action recognition by neural searching[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 2669-2676.
|
[21] |
YANG D, LI M M, FU H, et al. Centrality graph convolutional networks for Skeleton-based action recognition[J/OL]. (2020-03-06)[2020-10-15]. arXiv. http://doi.org/10.48550/arXiv.2003.03007.
|
[22] |
CHENG K, ZHANG Y, CAO C, et al. Decoupling GCN with dropgraph module for Skeleton-based action recognition[C]//Decoupling GCN with dropgraph module for Skeleton-based action recognition. Glasgow: Springer, 2020: 536-553.
|
[23] |
KIM T S, REITER A. Interpretable 3D human action analysis with temporal convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 1623-1631.
|
[24] |
KE Q, BENNAMOUN M, AN S, et al. A new representation of Skeleton sequences for 3D action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 3288-3297.
|
[25] |
SI C, JING Y, WANG W, et al. Skeleton-based action recognition with spatial reasoning and temporal stack learning[C]//Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 103-118.
|
[26] |
LIU J, SHAHROUDY A, XU D, et al. Spatio-temporal LSTM with trust gates for 3D human action recognition[C]//Proceedings of the European Conference on Computer Vision. Amsterdam: Springer, 2016: 816-833.
|
[27] |
LIU J, GANG W, PING H, et al. Global context-aware attention LSTM networks for 3D action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1647-1656.
|
[28] |
KE Q, BENNAMOUN M, AN S, et al. Learning clip representations for Skeleton-based 3D action recognition[J]. IEEE Transactions on Image Processing. Piscataway: IEEE, 2018: 27(6): 2842-2855.
|
[29] |
LIAO S, LYONS T, YANG W, et al. Learning stochastic differential equations using RNN with log signature features[J/OL]. (2019-08-22)[ 2021-10-15]. arXiv. https://doi.org/10.48550/arXiv.1908.08286.
|
[30] |
MEMMESHEIMER R, THEISEN N, PAULUS D. Gimme signals: discriminative signal encoding for multimodal activity recognition[C]//Proceedings of the IEEE International Conference on Intelligent Robots and Systems(IROS). Las Vegas: IEEE, 2020: 10394-10401.
|
[31] |
PAPADOPOULOS K, GHORBEL E, AOUAD D, et al. Vertex feature encoding and hierarchical temporal modeling in a spatio-temporal graph convolutional network for action recognition[C]//Proceedings of the 25th International Conference on Pattern Recognition. Milan: IEEE, 2021: 452-458.
|
[32] |
CAETANO C, SENA J, FRANCOIS B, et al. Skele Motion: a new representation of Skeleton Joint sequences based on motion information for 3D action recognition[C]//Proceedings of the International Conference on Advanced Video and Signal-based Surveillance(AVSS). Taipei, China: IEEE, 2019: 1-8.
|
[33] |
CAETANO C, BREMOND F, SCHWARTZ W R. Skeletonimage representation for 3D action recognition based on tree structure and reference joints[C]//Proceedings of the 32nd SIBGRAPI Conference on Graphics, Patterns and Images, 2019 32nd SIBGRAPI. Janeiro: IEEE, 2019: 16-23.
|