• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHEN Weineng, LU Toon, JIANG Yichuan, TANG Yong. Advances and Trends in Crowd Intelligence Evolutionary and Collaborative Computation[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 1-18. DOI: 10.6054/j.jscnun.2023001
Citation: CHEN Weineng, LU Toon, JIANG Yichuan, TANG Yong. Advances and Trends in Crowd Intelligence Evolutionary and Collaborative Computation[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 1-18. DOI: 10.6054/j.jscnun.2023001

Advances and Trends in Crowd Intelligence Evolutionary and Collaborative Computation

More Information
  • Received Date: December 09, 2022
  • Available Online: April 11, 2023
  • Crowd intelligence is an intelligent method for solving large-scale complex problems by aggregating group intelligence. Its idea is originated from the simulation of the intelligent behaviors of social biological swarms in nature. Through the division of labor, cooperation, coordination, and co-evolution, swarm creatures can emerge integrated intelligent behaviors. Swarms can complete complex tasks with a high degree of self-organization, self-ada-ptation and self-learning ability. Inspired by this, researchers use mathematics and computing tools to simulate the behavior of swarm intelligence, and develop a series of mechanisms and models based on the emergence and evolution of swarm intelligence. In recent years, with the development of the Internet, the collaborative and evolutionary phenomenon of human crowd intelligence based on the Internet of Things has further broadened the scope of crowd intelligence, presenting a broad application prospect, which also poses new challenges to the theoretical models and applications of group intelligence evolution. In 2017, "New Generation Artificial Intelligence Development Plan" clearly listed crowd intelligence as one of the important artificial intelligence theories and techniques to be deve-loped. In this report, the development of crowd intelligence has been studied from different perspectives: from biological swarms to multi-agent systems, and further to human crowds. The main research issues in crowd intelligence and evolutionary computing will be discussed in four aspects: theories and models of crowd intelligence, organization of crowds, crowd intelligence for collaborative decision-making, and the applications of crowd intelligence and evolutionary computing. The main research issues of crowd intelligence and evolutionary computation is summarized in this report. The reviews have also been made for the latest studies in China and abroad. Finally, some discussion has also been made for future trends and potential scientific issues of this research field.
  • [1]
    WHEELER W M. The ant-colony as an organism[J]. Journal of Morphology, 1911, 22(2): 307-325. doi: 10.1002/jmor.1050220206
    [2]
    BAECK T, FOGEL D B, MICHALEWICZ Z. Handbook of evolutionary computation[M]. Bristol: IOP, 1997.
    [3]
    REYNOLDS C W. Flocks, herds, and schools: a distributed behavioral model[J]. Computer Graphics, 1987, 21(4): 25-34. doi: 10.1145/37402.37406
    [4]
    DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66. doi: 10.1109/4235.585892
    [5]
    SLOWIK A. Particle swarm optimization[M]//Swarm Intelligence Algorithms. Boca Raton: CRC Press, 2020: 265-277.
    [6]
    ZHENG Z G. Emergence dynamics in complex systems: from synchronization to collective transport (Vol. 2)[M]. Beijing: Science Press, 2019.
    [7]
    ZELINKA I, DAVENDRA D, ROMAN S, et al. Do evolutionary algorithm dynamics create complex network structures[J]. Complex Systems, 2011, 20(2): 127-140. doi: 10.25088/ComplexSystems.20.2.127
    [8]
    DA SILVA F L, REALI COSTA A H. A survey on transfer learning for multiagent reinforcement learning systems[J]. Journal of Artificial Intelligence Research, 2019, 64: 645-703. doi: 10.1613/jair.1.11396
    [9]
    BRY F, SCHEFELS C, WIESER C. Human computation[J]. Information Technology, 2018, 60(1): 1-2.
    [10]
    JAIMES A, SEBE N, GATICA-PEREZ D. Human-centered computing: a multimedia perspectives[C]//Proceedings of the 14th ACM International Conference on Multimedia. New York: ACM, 2006: 855-864.
    [11]
    JOSEPH R C, ESTEVES J. Social computing[J]. Social Computing, 2011, 37(1): 28-29.
    [12]
    BOIMABEAU E. Decisions 2.0: the power of collective inte-lligence[J]. MIT Sloan Management Review, 2009, 50(2): 45-52.
    [13]
    GOLDBERG D E. Genetic algorithms in search, optimization, and machine learning[M]. Massachusetts: Addison-Wesley, 1989.
    [14]
    KOZA J. Genetic programming: on the programming of computers by means of natural selection[M]. Cambridge: MIT Press, 1992.
    [15]
    PAYNE K. Strategy, evolution, and war[M]. Washington: Geqrgetown University Press, 2018.
    [16]
    FOGEL D B. Applying evolutionary programming to selected traveling salesman problems[J]. Cybernetics and Systems, 1993, 24(1): 27-36. doi: 10.1080/01969729308961697
    [17]
    STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. doi: 10.1023/A:1008202821328
    [18]
    LARRAÑAGA P, LOZANO J A. Estimation of distribution algorithms: a new tool for evolutionary computation[M]. New York: Springer, 2002.
    [19]
    RUDOLPH G. Finite Markov Chain results in evolutionary computation[J]. Fundamenta Informaticae, 1998, 35(1/2/3/4): 67-89.
    [20]
    WINEBERG M, CHRISTENSEN S. An introduction to statistical analysis for evolutionary computation[C]//Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2008: 2639-2664.
    [21]
    CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73. doi: 10.1109/4235.985692
    [22]
    LIU Q F. Order-2 stability analysis of particle swarm optimization[J]. Evolutionary Computation, 2015, 23(2): 187-216. doi: 10.1162/EVCO_a_00129
    [23]
    DEB K, PRATAP A, AGARWAL S, et al. A fast and eli-tist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
    [24]
    DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part Ⅰ: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. doi: 10.1109/TEVC.2013.2281535
    [25]
    ZHANG Q F, LI H. MOEA/D: a multiobjective evolutio-nary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. doi: 10.1109/TEVC.2007.892759
    [26]
    JIANG S W, ZHANG J, ONG Y S, et al. A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm[J]. IEEE Transactions on Cybernetics, 2015, 45(10): 2202-2213. doi: 10.1109/TCYB.2014.2367526
    [27]
    YANG Q, CHEN W N, LI Y, et al. Multimodal estimation of distribution algorithms[J]. IEEE Transactions on Cybernetics, 2017, 47(3): 636-650. doi: 10.1109/TCYB.2016.2523000
    [28]
    YANG Q, CHEN W N, YU Z, et al. Adaptive multimodal continuous ant colony optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(2): 191-205. doi: 10.1109/TEVC.2016.2591064
    [29]
    WOLDESENBET Y G, YEN G G, TESSEMA B G. Constraint handling in multiobjective evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(3): 514-525. doi: 10.1109/TEVC.2008.2009032
    [30]
    WANG Y, LI J P, XUE X, et al. Utilizing the correlation between constraints and objective function for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(1): 29-43. doi: 10.1109/TEVC.2019.2904900
    [31]
    WANG Y, CAI Z. Combining multiobjective optimization with differential evolution to solve constrained optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2012, 16(1): 117-134. doi: 10.1109/TEVC.2010.2093582
    [32]
    CHEN W N, JIA Y H, ZHAO F, et al. A cooperative co-evolutionary approach to large-scale multisource water distribution network optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 842-857. doi: 10.1109/TEVC.2019.2893447
    [33]
    JIA Y H, CHEN W N, GU T, et al. Distributed cooperative co-evolution with adaptive computing resource allocation for large scale optimization[J]. IEEE Transactions on Evo-lutionary Computation, 2019, 23(2): 188-202. doi: 10.1109/TEVC.2018.2817889
    [34]
    CHENG R, JIN Y. A competitive swarm optimizer for large scale optimization[J]. IEEE Transactions on Cybernetics, 2015, 45(2): 191-204. doi: 10.1109/TCYB.2014.2322602
    [35]
    YANG Q, CHEN W, DENG J D, et al. A level-based learning swarm optimizer for large-scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(4): 578-594. doi: 10.1109/TEVC.2017.2743016
    [36]
    JIN Y, WANG H, CHUGH T, et al. Data-driven evolutionary optimization: an overview and case studies[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(3): 442-458. doi: 10.1109/TEVC.2018.2869001
    [37]
    WANG H, JIN Y. A random forest-assisted evolutionary algorithm for data-driven constrained multiobjective combinatorial optimization of trauma systems[J]. IEEE Transactions on Cybernetics, 2020, 50(2): 536-549. doi: 10.1109/TCYB.2018.2869674
    [38]
    SMITH J M, PRICE G R. The logic of animal conflict[J]. Nature, 1973, 246: 15-18. doi: 10.1038/246015a0
    [39]
    TAYLOR P D, JONKER L B. Evolutionary stable strategies and game dynamics[J]. Mathematical Biosciences, 1978, 40(1/2): 145-156.
    [40]
    KHAN A A, ABOLHASAN M, NI W. An evolutionary game theoretic approach for stable and optimized clustering in vanets[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4501-4513. doi: 10.1109/TVT.2018.2790391
    [41]
    TIAN Z, GAO X, SU S, et al. Evaluating reputation mana-gement schemes of internet of vehicles based on evolutio-nary game theory[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5971-5980. doi: 10.1109/TVT.2019.2910217
    [42]
    ALAM M, KUGA K, TANIMOTO J. Three-strategy and four-strategy model of vaccination game introducing an intermediate protecting measure[J]. Applied Mathema-tics and Computation, 2019, 346: 408-422. doi: 10.1016/j.amc.2018.10.015
    [43]
    CHICA M, CHIONG R, KIRLEY M, et al. A networked-player trust game and its evolutionary dynamics[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(6): 866-878. doi: 10.1109/TEVC.2017.2769081
    [44]
    FANG Y J, WEI W, MEI S W, et al. Promoting electric vehicle charging infrastructure considering policy incentives and user preferences: an evolutionary game model in a small-world network[J]. Journal of Cleaner Production, 2020, 258: 120753/1-13. doi: 10.1016/j.jclepro.2020.120753
    [45]
    WANG L, WANG Z, WEI G, et al. Observer-based consensus control for discrete-time multiagent systems with coding - decoding communication protocol[J]. IEEE Transactions on Cybernetics, 2019, 49(12): 4335-4345. doi: 10.1109/TCYB.2018.2863664
    [46]
    LIU H, CHENG L, TAN M, et al. Exponential finite-time consensus of fractional - order multiagent systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(4): 1549-1558. doi: 10.1109/TSMC.2018.2816060
    [47]
    LV Y, LI Z, DUAN Z. Distributed PI control for consensus of heterogeneous multiagent systems over directed graphs[J]. IEEE Transactions on Systems, Man, and Cyberne-tics: Systems, 2020, 50(4): 1602-1609. doi: 10.1109/TSMC.2018.2792472
    [48]
    SU H, LONG M, ZENG Z. Controllability of two-time-scale discrete-time multiagent systems[J]. IEEE Transa-ctions on Cybernetics, 2020, 50(4): 1440-1449. doi: 10.1109/TCYB.2018.2884498
    [49]
    TIAN L, GUAN Y, WANG L. Controllability and observability of multi-agent systems with heterogeneous and switching topologies[J]. International Journal of Control, 2020, 93(3): 437-448. doi: 10.1080/00207179.2018.1475751
    [50]
    CHEN J, LI J, YUAN X. Global fuzzy adaptive consensus control of unknown nonlinear multiagent systems[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(3): 510-522. doi: 10.1109/TFUZZ.2019.2908771
    [51]
    ZHANG Y, SUN J, LIANG H, et al. Event-triggered adaptive tracking control for multiagent systems with unknown disturbances[J]. IEEE Transactions on Cyberne-tics, 2020, 50(3): 890-901. doi: 10.1109/TCYB.2018.2869084
    [52]
    ZHAO N, LIANG Y C, NIYATO D, et al. Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5141-5152. doi: 10.1109/TWC.2019.2933417
    [53]
    LIU H, MA T, LEWIS F L, et al. Robust formation control for multiple quadrotors with nonlinearities and distur-bances[J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1362-1371. doi: 10.1109/TCYB.2018.2875559
    [54]
    XU Y, FANG M, WU Z G, et al. Input-based event-tri-ggering consensus of multiagent systems under denial-of-service attacks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(4): 1455-1464. doi: 10.1109/TSMC.2018.2875250
    [55]
    DRUGAN M M. Reinforcement learning versus evolutio-nary computation: a survey on hybrid algorithms[J]. Swarm and Evolutionary Computation, 2019, 44: 228-246. doi: 10.1016/j.swevo.2018.03.011
    [56]
    WHITESON S, STONE P. Sample-efficient evolutionary function approximation for reinforcement learning[C]//Pro- ceedings of the National Conference on Artificial Intelligence. Washington: AAAI, 2006: 518-523.
    [57]
    HEIDRICH-MEISNER V, IGEL C. Uncertainty handling CMA-ES for reinforcement learning[C]//Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2009: 1211-1218.
    [58]
    GIRGIN S, PREUX P. Feature discovery in reinforcement learning using genetic programming[C]//Genetic Programming. Berlin: Springer, 2008: 218-229.
    [59]
    LIU C M, XU X, HU D W. Multiobjective reinforcement lear-ning: a comprehensive overview[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(3): 385-398. doi: 10.1109/TSMC.2014.2358639
    [60]
    DRUGAN M M. Efficient real-parameter single objective optimizer using hierarchical CMA-ES solvers[M]//A Bridge between Probability, Set Oriented Numerics and Evo-lutionary Computation. Berlin: Springer, 2018: 131-145.
    [61]
    FIALHO Á, DA COSTA L, SCHOENAUER M, et al. Extreme value based adaptive operator selection[C]//Para-llel Problem Solving from Nature - PPSN X. Berlin: Sprin-ger, 2008: 175-184.
    [62]
    ZHANG W, MEI H. A constructive model for collective intelligence[J]. National Science Review, 2020, 7(8): 1273-1277. doi: 10.1093/nsr/nwaa092
    [63]
    BANG D, FRITH C D. Making better decisions in groups[J]. Royal Society Open Science, 2017, 4(8): 170193/1-22.
    [64]
    DAVIS-STOBER C P, BUDESCU D V, BROOMELL S B, et al. The composition of optimally wise crowds[J]. Decision Analysis, 2015, 12(3): 130-143. doi: 10.1287/deca.2015.0315
    [65]
    SCHNEIDER M. Knowledge integration[M]. Boston: Springer, 2012.
    [66]
    VILALTA R, DRISSI Y. A perspective view and survey of meta-learning[J]. Artificial Intelligence Review, 2002, 18(2): 77-95. doi: 10.1023/A:1019956318069
    [67]
    OSINSKI M, RUMMEL N. Towards successful knowledge integration in online collaboration: an experiment on the role of meta-knowledge[C]//Proceedings of the ACM on Human-Computer Interaction. New York: ACM, 2019: 1-17.
    [68]
    KIM D J, LIM Y K. Co-performing agent: design for building user-agent partnership in learning and adaptive services[C]//Proceedings of the Conference on Human Factors in Computing Systems. New York: ACM, 2019: 1-14.
    [69]
    ZHAO T F, CHEN W N, KWONG S, et al. Evolutionary divide-and-conquer algorithm for virus spreading control over networks[J]. IEEE Transactions on Cybernetics, 2021, 51(7): 3752-3766. doi: 10.1109/TCYB.2020.2975530
    [70]
    LYNN N, ALI M Z, SUGANTHAN P N. Population topo-logies for particle swarm optimization and differential evolution[J]. Swarm and Evolutionary Computation, 2018, 39: 24-35. doi: 10.1016/j.swevo.2017.11.002
    [71]
    KARI J. Theory of cellular automata: a survey[J]. Theoretical Computer Science, 2005, 334(1/2/3): 3-33.
    [72]
    KENNEDY J, MENDES R. Population structure and particle swarm performance[C]//Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu: IEEE, 2002: 1671-1676.
    [73]
    PAYNE J L, EPPSTEIN M J. Evolutionary dynamics on scale-free interaction networks[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(4): 895-912. doi: 10.1109/TEVC.2009.2019825
    [74]
    GIACOBINI M, TOMASSINI M, TETTAMANZI A. Takeover time curves in random small-world structured populations[C]//Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2005: 1333-1340.
    [75]
    KIRLEY M, STEWART R. An analysis of the effects of population structure on scalable multiobjective optimization problems[C]//Proceedings of GECCO 2007: Gene-tic and Evolutionary Computation Conference. New York: ACM, 2007: 845-852.
    [76]
    PAYNE J L, EPPSTEIN M J. Emergent mating topologies in spatially structured genetic algorithms[C]//Procee-dings of the 8th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2006: 207-214.
    [77]
    WU D, JIANG N, DU W, et al. Particle swarm optimization with moving particles on scale-free networks[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(1): 497-506. doi: 10.1109/TNSE.2018.2854884
    [78]
    KOROSH M, CLEOTILDE G. Selfishness drives collective cooperation and network formation[C]//Proceedings of ACM Collective Intelligence Conference Series. New York: ACM, 2019: 54/1-4.
    [79]
    TINÓS R, YANG S. A self-organizing random immigrants genetic algorithm for dynamic optimization problems[J]. Genetic Programming and Evolvable Machines, 2007, 8(3): 255-286. doi: 10.1007/s10710-007-9024-z
    [80]
    WHITACRE J M, SARKER R A, PHAM Q T. The self-organization of interaction networks for nature-inspired optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(2): 220-230. doi: 10.1109/TEVC.2007.900327
    [81]
    KROMER P, KUDELKA M, SENKERIK R, et al. Diffe- rential evolution with preferential interaction network[C]// Proceedings of 2017 Congress on Evolutionary Computation. New York: IEEE, 2017: 1916-1923.
    [82]
    KUŚMIERZ Ł, TOYOIZUMI T. Robust random search with scale-free stochastic resetting[J]. Physical Review E, 2019, 100(3): 32110/1-8.
    [83]
    FRANCISCO P, WEI Y. Can free resources create economic value?The impact of crowd contributors on venture capital investment to opensource technologies[C]//Proceedings of ACM Collective Intelligence Conference Series. New York: ACM, 2019: 47/1-38.
    [84]
    ZHAN Z H, ZHANG J, LI Y, et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 2009, 39(6): 1362-1381. doi: 10.1109/TSMCB.2009.2015956
    [85]
    CHEN W N, ZHANG J, LIN Y, et al. Particle swarm optimization with an aging leader and challengers[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(2): 241-258. doi: 10.1109/TEVC.2011.2173577
    [86]
    LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295. doi: 10.1109/TEVC.2005.857610
    [87]
    MCCLAVE H. Deliberative democracy and political education[J]. Irish Educational Studies, Taylor & Francis, 2000, 19(1): 245-256.
    [88]
    BAINBRIDGE S M. Why a board?Group decisionmaking in corporate governance[J]. Vanderbilt Law Review, 2002, 55(1): 1-55.
    [89]
    JIANG F, CHENG H, CHEN G. Collective decision-ma-king for dynamic environments with visual occlusions[J]. Swarm Intelligence, 2022, 16: 7-27. doi: 10.1007/s11721-021-00200-x
    [90]
    SONG A, CHEN W N, GONG Y J, et al. A divide-and-conquer evolutionary algorithm for large-scale virtual network embedding[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(3): 566-580.
    [91]
    OMIDVAR M N, LI X, MEI Y, et al. Cooperative co-evolution with differential grouping for large scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(3): 378-393.
    [92]
    CHEN W X, WEISE T, YANG Z Y, et al. Large-scale global optimization using cooperative coevolution with vari-able interaction learning[C]//Parallel Problem Solving from Nature, PPSN XI. Berlin: Springer, 2010: 300-309.
    [93]
    YANG Z, TANG K, YAO X. Multilevel cooperative coevolution for large scale optimization[C]//Proceedings of CEC 2008: IEEE Congress on Evolutionary Computation. New York: IEEE, 2008: 1663-1670.
    [94]
    SONG A, YANG Q, CHEN W N, et al. A random-based dynamic grouping strategy for large scale multi-objective optimization[C]//Proceedings of 2016 IEEE Congress on Evolutionary Computation. New York: IEEE, 2016: 468-475.
    [95]
    LI X, EPITROPAKIS M G, DEB K, et al. Seeking multiple solutions: an updated survey on niching methods and their applications[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(4): 518-538. doi: 10.1109/TEVC.2016.2638437
    [96]
    BRANKE J, KAUSSLER T, SMIDT C, et al. A multi-popu-lation approach to dynamic optimization problems[C]//Proceedings of Evolutionary Design and Manufacture. Berlin: Springer, 2000: 299-307.
    [97]
    WEI F F, CHEN W N, YANG Q, et al. A classifier-assisted level-based learning swarm optimizer for expensive optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(2): 219-233. doi: 10.1109/TEVC.2020.3017865
    [98]
    GUO X Q, CHEN W N, WEI F F, et al. Edge-cloud co-evolutionary algorithms for distributed data-driven optimization problems[J/OL]. IEEE Transactions on Cyberne-tics, (2022-11-29)[2022-12-01]. https://ieeexplore.ieee.org/document/9965951.
    [99]
    ASKAY D, METCALF L, ROSENBERG L B, et al. Amplifying the collective intelligence of teams with swarm AI[C]//Proceedings of ACM Collective Intelligence Conference Series. New York: ACM, 2019: 1-4.
    [100]
    VENKATAGIRI S, THEBAULT-SPIEKER J, KOHLER R, et al. GroundTruth: augmenting expert image geolocation with crowdsourcing and shared representations[J]. Proceedings of the ACM on Human-Computer Interaction. New York: ACM, 2019, 3: 107/1-30.
    [101]
    GUNASEKARAN S S, MOSTAFA S A, AHMAD M S. The emergence of collective intelligence[C]//Procee-dings of ICRⅡS 2013: International Conference on Research and Innovation in Information Systems. New York: IEEE, 2013: 451-456.
    [102]
    MONTOYA-TORRES J R, LÓPEZ FRANCO J, NIETO ISAZA S, et al. A literature review on the vehicle routing problem with multiple depots[J]. Computers and Industrial Engineering, 2015, 79: 115-129. doi: 10.1016/j.cie.2014.10.029
    [103]
    PIZZUTI C. Evolutionary computation for community detection in networks: a review[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(3): 464-483. doi: 10.1109/TEVC.2017.2737600
    [104]
    SRINIVASAN K B, DANESCU-NICULESCU-MIZIL C, LEE L, et al. Content removal as a moderation strategy: compliance and other outcomes in the changemyview community[J]. Proceedings of the ACM on Human-Computer Interaction, 2019, 3: 163/1-21.
    [105]
    XUE B, ZHANG M, BROWNE W N, et al. A survey on evolutionary computation approaches to feature selection[J]. IEEE Transactions on Evolutionary Computation, 2015, 20(4): 606-626.
    [106]
    PONSICH A, JAIMES A L, COELLO C A C. A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(3): 321-344. doi: 10.1109/TEVC.2012.2196800
    [107]
    ALRASHIDI M R, EL-HAWARY M E. A survey of particle swarm optimization applications in electric power systems[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(4): 913-918. doi: 10.1109/TEVC.2006.880326
    [108]
    BRAEKERS K, RAMAEKERS K, VAN NIEUWENHUYSE I. The vehicle routing problem: state of the art classification and review[J]. Computers and Industrial Engineering, 2016, 99: 300-313. doi: 10.1016/j.cie.2015.12.007
    [109]
    KARAKATIČ S, PODGORELEC V. A survey of genetic algorithms for solving multi depot vehicle routing problem[J]. Applied Soft Computing Journal, 2015, 27: 519-532. doi: 10.1016/j.asoc.2014.11.005
    [110]
    JIA Y H, CHEN W N, GU T, et al. A dynamic logistic dispatching system with set-based particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(9): 1607-1621. doi: 10.1109/TSMC.2017.2682264
    [111]
    TOFIGHI S, TORABI S A, MANSOURI S A. Humanita- rian logistics network design under mixed uncertainty[J]. European Journal of Operational Research, 2016, 250(1): 239-250. doi: 10.1016/j.ejor.2015.08.059
    [112]
    JIANG Y C, JIANG J C. Understanding social networks from a multiagent perspective[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(10): 2743-2759. doi: 10.1109/TPDS.2013.254
    [113]
    PIZZUTI C. A multiobjective genetic algorithm to find communities in complex networks[J]. IEEE Transactions on Evolutionary Computation, 2012, 16(3): 418-430. doi: 10.1109/TEVC.2011.2161090
    [114]
    WEN X, CHEN W N, LIN Y, et al. A maximal clique based multiobjective evolutionary algorithm for overla- pping community detection[J]. IEEE Transactions on Evo- lutionary Computation, 2017, 21(3): 363-377. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7558207
    [115]
    ROBERTS S T. Commercial content moderation: digital laborers' dirty work[M]. Hawaii: Media Studies Publications, 2016.
    [116]
    CHANDRASEKHARAN E, GANDHI C, MUSTELIER M W, et al. CrossMod: a cross-community learning-based system to assist reddit moderators[J]. Proceedings of the ACM on Human-Computer Interaction, 2019, 3: 174/1-30.
    [117]
    SUMMERS E, PUNZALAN R. Bots, seeds and people: web archives as infrastructure[C]//Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. New York: Association for Computing Machinery, 2017: 821-834.
    [118]
    SEIDEL S, BERENTE N, LINDBERG A, et al. Autonomous tools and design: a triple-loop approach to human- machine learning[J]. Communications of the ACM, 2019, 62(1): 50-57.
    [119]
    ZHENG L, ALBANO C M, VORA N M, et al. The roles bots play in Wikipedia[J]. Proceedings of the ACM on Human-Computer Interaction, 2019, 3: 215/1-20.
    [120]
    ZHANG Z X, CHEN W N, JIN H, et al. A preference biobjective evolutionary algorithm for the payment scheduling negotiation problem[J]. IEEE Transactions on Cyberne-tics, 2021, 51(12): 6105-6118. doi: 10.1109/TCYB.2020.2966492
    [121]
    BRANKE J, NGUYEN S, PICKARDT C W, et al. Automated design of production scheduling heuristics: a review[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(1): 110-124. doi: 10.1109/TEVC.2015.2429314
    [122]
    JIA Y H, CHEN W N, YUAN H, et al. An intelligent cloud workflow scheduling system with time estimation and adaptive ant colony optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(1): 634-649. doi: 10.1109/TSMC.2018.2881018
    [123]
    ZHU Z, ZHANG G, LI M, et al. Evolutionary multi-objective workflow scheduling in cloud[J]. IEEE Transactions on Parallel and Distributed Systems, 2016, 27(5): 1344-1357. doi: 10.1109/TPDS.2015.2446459
    [124]
    CHEN Z G, ZHAN Z H, LIN Y, et al. Multiobjective cloud workflow scheduling: a multiple populations ant colony system approach[J]. IEEE Transactions on Cybernetics, 2019, 49(8): 2912-2926. doi: 10.1109/TCYB.2018.2832640
    [125]
    FARD H M, PRODAN R, FAHRINGER T. A truthful dynamic workflow scheduling mechanism for commercial multicloud environments[J]. IEEE Transactions on Para-llel and Distributed Systems, 2013, 24(6): 1203-1212. doi: 10.1109/TPDS.2012.257
    [126]
    HAN Y, GONG D, JIN Y, et al. Evolutionary multiobjective blocking lot-streaming flow shop scheduling with machine breakdowns[J]. IEEE Transactions on Cybernetics, 2019, 49(1): 184-197. doi: 10.1109/TCYB.2017.2771213
    [127]
    TELIKANI A, GANDOMI A H, SHAHBAHRAMI A. A survey of evolutionary computation for association rule mining[J]. Information Sciences, 2020, 524: 318-352. doi: 10.1016/j.ins.2020.02.073
    [128]
    HRUSCHKA E R, CAMPELLO R J G B, FREITAS A A, et al. A survey of evolutionary algorithms for clustering[J]. IEEE Transactions on Systems, Man and Cybernetics: Part C, 2009, 39(2): 133-155. doi: 10.1109/TSMCC.2008.2007252
    [129]
    SUN Y, XUE B, ZHANG M, et al. Automatically designing CNN architectures using the genetic algorithm for image classification[J]. IEEE Transactions on Cyberne-tics, 2020, 50(9): 3840-3854. doi: 10.1109/TCYB.2020.2983860
    [130]
    SUN Y, WANG H, XUE B, et al. Surrogate-assisted evolutionary deep learning using an end-to-end random fo- rest-based performance predictor[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(2): 350-364. doi: 10.1109/TEVC.2019.2924461
    [131]
    TSAI J, YIN Z, KWAK J Y, et al. Urban security: game-theoretic resource allocation in networked physical domains[C]//Proceedings of the National Conference on Artificial Intelligence. Washington: AAAI, 2010: 881-886.
    [132]
    BROWN M, SAISUBRAMANIAN S, VARAKANTHAM P, et al. STREETS: Game-theoretic traffic patrolling with exploration and exploitation[C]//Proceedings of the National Conference on Artificial Intelligence. Washington: AAAI, 2014: 2966-2971.
    [133]
    ROSENFELD A, KRAUS S. When security games hit traffic: optimal traffic enforcement under one sided uncertainty[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: IJCAI, 2017: 3814-3822.
    [134]
    ZHANG Y, GUO Q, AN B, et al. Optimal interdiction of urban criminals with the aid of real-time information[C]//Proceedings of the National Conference on Artificial Intelligence. Washington: AAAI, 2019: 1262-1269.
    [135]
    ZHANG Y, AN B. Computing team-maxmin equilibria in zero-sum multiplayer extensive-form games[C]//Proceedings of the National Conference on Artificial Intelligence. Washington: AAAI, 2020: 2318-2325.
    [136]
    ZHANG Y, JIANG C, SONG L, et al. Incentive mechanism for mobile crowdsourcing using an optimized tournament model[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(4): 880-892. doi: 10.1109/JSAC.2017.2680798
    [137]
    HU Z, ZHANG J, LIANG Y, et al. Inference aided reinforcement learning for incentive mechanism design in crowdsourcing[C]//Advances in Neural Information Processing Systems. Massachusetts: MIT Press, 2018: 5507-5517.
    [138]
    JAGABATHULA S, SUBRAMANIAN L, VENKATARAMAN A. Reputation-based worker filtering in crowdsour-cing[C]//Advances in Neural Information Processing Systems. Massachusetts: MIT Press, 2014: 2492-2500.
    [139]
    TARABLE A, NORDIO A, LEONARDI E, et al. The importance of worker reputation information in microtask-based crowd work systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2017, 28(2): 558-571.
    [140]
    XIAO Y, DORFLER F, SCHAAR M. Incentive design in peer review: rating and repeated endogenous matching[J]. IEEE Transactions on Network Science and Engineering, 2019, 6(4): 898-908. doi: 10.1109/TNSE.2018.2877578
    [141]
    SHI W, CHEN W N, LIN Y, et al. An adaptive estimation of distribution algorithm for multipolicy insurance investment planning[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(1): 1-14. doi: 10.1109/TEVC.2017.2782571
    [142]
    ASAFUDDOULA M, RAY T, SARKER R. A decomposition-based evolutionary algorithm for many objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(3): 445-460. doi: 10.1109/TEVC.2014.2339823
    [143]
    FJELL C D, JENSSEN H, CHEUNG W A, et al. Optimization of antibacterial peptides by genetic algorithms and cheminformatics[J]. Chemical Biology and Drug Design, 2011, 77(1): 48-56. doi: 10.1111/j.1747-0285.2010.01044.x
    [144]
    VPESCETELLI N, CEBRIAN M, RAHWAN I. BeeMe: real-time internet control of situated human agents[J]. Computer, 2020, 53(8): 49-58. doi: 10.1109/MC.2020.2996824
  • Cited by

    Periodical cited type(2)

    1. 熊文文, 陈俊芳, 王燕, 王勇. 工作气压对氩射频电感耦合等离子体模式转换的影响. 华南师范大学学报(自然科学版). 2019(01): 16-21 .
    2. 张金禾, 周严东, 刘汝兵, 林麒. 低压汞灯等离子体电子密度分布光谱诊断研究. 机电技术. 2015(06): 88-91 .

    Other cited types(1)

Catalog

    Article views (883) PDF downloads (387) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return