Citation: | CHEN Weineng, LU Toon, JIANG Yichuan, TANG Yong. Advances and Trends in Crowd Intelligence Evolutionary and Collaborative Computation[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 1-18. DOI: 10.6054/j.jscnun.2023001 |
[1] |
WHEELER W M. The ant-colony as an organism[J]. Journal of Morphology, 1911, 22(2): 307-325. doi: 10.1002/jmor.1050220206
|
[2] |
BAECK T, FOGEL D B, MICHALEWICZ Z. Handbook of evolutionary computation[M]. Bristol: IOP, 1997.
|
[3] |
REYNOLDS C W. Flocks, herds, and schools: a distributed behavioral model[J]. Computer Graphics, 1987, 21(4): 25-34. doi: 10.1145/37402.37406
|
[4] |
DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66. doi: 10.1109/4235.585892
|
[5] |
SLOWIK A. Particle swarm optimization[M]//Swarm Intelligence Algorithms. Boca Raton: CRC Press, 2020: 265-277.
|
[6] |
ZHENG Z G. Emergence dynamics in complex systems: from synchronization to collective transport (Vol. 2)[M]. Beijing: Science Press, 2019.
|
[7] |
ZELINKA I, DAVENDRA D, ROMAN S, et al. Do evolutionary algorithm dynamics create complex network structures[J]. Complex Systems, 2011, 20(2): 127-140. doi: 10.25088/ComplexSystems.20.2.127
|
[8] |
DA SILVA F L, REALI COSTA A H. A survey on transfer learning for multiagent reinforcement learning systems[J]. Journal of Artificial Intelligence Research, 2019, 64: 645-703. doi: 10.1613/jair.1.11396
|
[9] |
BRY F, SCHEFELS C, WIESER C. Human computation[J]. Information Technology, 2018, 60(1): 1-2.
|
[10] |
JAIMES A, SEBE N, GATICA-PEREZ D. Human-centered computing: a multimedia perspectives[C]//Proceedings of the 14th ACM International Conference on Multimedia. New York: ACM, 2006: 855-864.
|
[11] |
JOSEPH R C, ESTEVES J. Social computing[J]. Social Computing, 2011, 37(1): 28-29.
|
[12] |
BOIMABEAU E. Decisions 2.0: the power of collective inte-lligence[J]. MIT Sloan Management Review, 2009, 50(2): 45-52.
|
[13] |
GOLDBERG D E. Genetic algorithms in search, optimization, and machine learning[M]. Massachusetts: Addison-Wesley, 1989.
|
[14] |
KOZA J. Genetic programming: on the programming of computers by means of natural selection[M]. Cambridge: MIT Press, 1992.
|
[15] |
PAYNE K. Strategy, evolution, and war[M]. Washington: Geqrgetown University Press, 2018.
|
[16] |
FOGEL D B. Applying evolutionary programming to selected traveling salesman problems[J]. Cybernetics and Systems, 1993, 24(1): 27-36. doi: 10.1080/01969729308961697
|
[17] |
STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. doi: 10.1023/A:1008202821328
|
[18] |
LARRAÑAGA P, LOZANO J A. Estimation of distribution algorithms: a new tool for evolutionary computation[M]. New York: Springer, 2002.
|
[19] |
RUDOLPH G. Finite Markov Chain results in evolutionary computation[J]. Fundamenta Informaticae, 1998, 35(1/2/3/4): 67-89.
|
[20] |
WINEBERG M, CHRISTENSEN S. An introduction to statistical analysis for evolutionary computation[C]//Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2008: 2639-2664.
|
[21] |
CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73. doi: 10.1109/4235.985692
|
[22] |
LIU Q F. Order-2 stability analysis of particle swarm optimization[J]. Evolutionary Computation, 2015, 23(2): 187-216. doi: 10.1162/EVCO_a_00129
|
[23] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and eli-tist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
|
[24] |
DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part Ⅰ: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. doi: 10.1109/TEVC.2013.2281535
|
[25] |
ZHANG Q F, LI H. MOEA/D: a multiobjective evolutio-nary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. doi: 10.1109/TEVC.2007.892759
|
[26] |
JIANG S W, ZHANG J, ONG Y S, et al. A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm[J]. IEEE Transactions on Cybernetics, 2015, 45(10): 2202-2213. doi: 10.1109/TCYB.2014.2367526
|
[27] |
YANG Q, CHEN W N, LI Y, et al. Multimodal estimation of distribution algorithms[J]. IEEE Transactions on Cybernetics, 2017, 47(3): 636-650. doi: 10.1109/TCYB.2016.2523000
|
[28] |
YANG Q, CHEN W N, YU Z, et al. Adaptive multimodal continuous ant colony optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(2): 191-205. doi: 10.1109/TEVC.2016.2591064
|
[29] |
WOLDESENBET Y G, YEN G G, TESSEMA B G. Constraint handling in multiobjective evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(3): 514-525. doi: 10.1109/TEVC.2008.2009032
|
[30] |
WANG Y, LI J P, XUE X, et al. Utilizing the correlation between constraints and objective function for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(1): 29-43. doi: 10.1109/TEVC.2019.2904900
|
[31] |
WANG Y, CAI Z. Combining multiobjective optimization with differential evolution to solve constrained optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2012, 16(1): 117-134. doi: 10.1109/TEVC.2010.2093582
|
[32] |
CHEN W N, JIA Y H, ZHAO F, et al. A cooperative co-evolutionary approach to large-scale multisource water distribution network optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 842-857. doi: 10.1109/TEVC.2019.2893447
|
[33] |
JIA Y H, CHEN W N, GU T, et al. Distributed cooperative co-evolution with adaptive computing resource allocation for large scale optimization[J]. IEEE Transactions on Evo-lutionary Computation, 2019, 23(2): 188-202. doi: 10.1109/TEVC.2018.2817889
|
[34] |
CHENG R, JIN Y. A competitive swarm optimizer for large scale optimization[J]. IEEE Transactions on Cybernetics, 2015, 45(2): 191-204. doi: 10.1109/TCYB.2014.2322602
|
[35] |
YANG Q, CHEN W, DENG J D, et al. A level-based learning swarm optimizer for large-scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(4): 578-594. doi: 10.1109/TEVC.2017.2743016
|
[36] |
JIN Y, WANG H, CHUGH T, et al. Data-driven evolutionary optimization: an overview and case studies[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(3): 442-458. doi: 10.1109/TEVC.2018.2869001
|
[37] |
WANG H, JIN Y. A random forest-assisted evolutionary algorithm for data-driven constrained multiobjective combinatorial optimization of trauma systems[J]. IEEE Transactions on Cybernetics, 2020, 50(2): 536-549. doi: 10.1109/TCYB.2018.2869674
|
[38] |
SMITH J M, PRICE G R. The logic of animal conflict[J]. Nature, 1973, 246: 15-18. doi: 10.1038/246015a0
|
[39] |
TAYLOR P D, JONKER L B. Evolutionary stable strategies and game dynamics[J]. Mathematical Biosciences, 1978, 40(1/2): 145-156.
|
[40] |
KHAN A A, ABOLHASAN M, NI W. An evolutionary game theoretic approach for stable and optimized clustering in vanets[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4501-4513. doi: 10.1109/TVT.2018.2790391
|
[41] |
TIAN Z, GAO X, SU S, et al. Evaluating reputation mana-gement schemes of internet of vehicles based on evolutio-nary game theory[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5971-5980. doi: 10.1109/TVT.2019.2910217
|
[42] |
ALAM M, KUGA K, TANIMOTO J. Three-strategy and four-strategy model of vaccination game introducing an intermediate protecting measure[J]. Applied Mathema-tics and Computation, 2019, 346: 408-422. doi: 10.1016/j.amc.2018.10.015
|
[43] |
CHICA M, CHIONG R, KIRLEY M, et al. A networked-player trust game and its evolutionary dynamics[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(6): 866-878. doi: 10.1109/TEVC.2017.2769081
|
[44] |
FANG Y J, WEI W, MEI S W, et al. Promoting electric vehicle charging infrastructure considering policy incentives and user preferences: an evolutionary game model in a small-world network[J]. Journal of Cleaner Production, 2020, 258: 120753/1-13. doi: 10.1016/j.jclepro.2020.120753
|
[45] |
WANG L, WANG Z, WEI G, et al. Observer-based consensus control for discrete-time multiagent systems with coding - decoding communication protocol[J]. IEEE Transactions on Cybernetics, 2019, 49(12): 4335-4345. doi: 10.1109/TCYB.2018.2863664
|
[46] |
LIU H, CHENG L, TAN M, et al. Exponential finite-time consensus of fractional - order multiagent systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(4): 1549-1558. doi: 10.1109/TSMC.2018.2816060
|
[47] |
LV Y, LI Z, DUAN Z. Distributed PI control for consensus of heterogeneous multiagent systems over directed graphs[J]. IEEE Transactions on Systems, Man, and Cyberne-tics: Systems, 2020, 50(4): 1602-1609. doi: 10.1109/TSMC.2018.2792472
|
[48] |
SU H, LONG M, ZENG Z. Controllability of two-time-scale discrete-time multiagent systems[J]. IEEE Transa-ctions on Cybernetics, 2020, 50(4): 1440-1449. doi: 10.1109/TCYB.2018.2884498
|
[49] |
TIAN L, GUAN Y, WANG L. Controllability and observability of multi-agent systems with heterogeneous and switching topologies[J]. International Journal of Control, 2020, 93(3): 437-448. doi: 10.1080/00207179.2018.1475751
|
[50] |
CHEN J, LI J, YUAN X. Global fuzzy adaptive consensus control of unknown nonlinear multiagent systems[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(3): 510-522. doi: 10.1109/TFUZZ.2019.2908771
|
[51] |
ZHANG Y, SUN J, LIANG H, et al. Event-triggered adaptive tracking control for multiagent systems with unknown disturbances[J]. IEEE Transactions on Cyberne-tics, 2020, 50(3): 890-901. doi: 10.1109/TCYB.2018.2869084
|
[52] |
ZHAO N, LIANG Y C, NIYATO D, et al. Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5141-5152. doi: 10.1109/TWC.2019.2933417
|
[53] |
LIU H, MA T, LEWIS F L, et al. Robust formation control for multiple quadrotors with nonlinearities and distur-bances[J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1362-1371. doi: 10.1109/TCYB.2018.2875559
|
[54] |
XU Y, FANG M, WU Z G, et al. Input-based event-tri-ggering consensus of multiagent systems under denial-of-service attacks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(4): 1455-1464. doi: 10.1109/TSMC.2018.2875250
|
[55] |
DRUGAN M M. Reinforcement learning versus evolutio-nary computation: a survey on hybrid algorithms[J]. Swarm and Evolutionary Computation, 2019, 44: 228-246. doi: 10.1016/j.swevo.2018.03.011
|
[56] |
WHITESON S, STONE P. Sample-efficient evolutionary function approximation for reinforcement learning[C]//Pro- ceedings of the National Conference on Artificial Intelligence. Washington: AAAI, 2006: 518-523.
|
[57] |
HEIDRICH-MEISNER V, IGEL C. Uncertainty handling CMA-ES for reinforcement learning[C]//Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2009: 1211-1218.
|
[58] |
GIRGIN S, PREUX P. Feature discovery in reinforcement learning using genetic programming[C]//Genetic Programming. Berlin: Springer, 2008: 218-229.
|
[59] |
LIU C M, XU X, HU D W. Multiobjective reinforcement lear-ning: a comprehensive overview[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(3): 385-398. doi: 10.1109/TSMC.2014.2358639
|
[60] |
DRUGAN M M. Efficient real-parameter single objective optimizer using hierarchical CMA-ES solvers[M]//A Bridge between Probability, Set Oriented Numerics and Evo-lutionary Computation. Berlin: Springer, 2018: 131-145.
|
[61] |
FIALHO Á, DA COSTA L, SCHOENAUER M, et al. Extreme value based adaptive operator selection[C]//Para-llel Problem Solving from Nature - PPSN X. Berlin: Sprin-ger, 2008: 175-184.
|
[62] |
ZHANG W, MEI H. A constructive model for collective intelligence[J]. National Science Review, 2020, 7(8): 1273-1277. doi: 10.1093/nsr/nwaa092
|
[63] |
BANG D, FRITH C D. Making better decisions in groups[J]. Royal Society Open Science, 2017, 4(8): 170193/1-22.
|
[64] |
DAVIS-STOBER C P, BUDESCU D V, BROOMELL S B, et al. The composition of optimally wise crowds[J]. Decision Analysis, 2015, 12(3): 130-143. doi: 10.1287/deca.2015.0315
|
[65] |
SCHNEIDER M. Knowledge integration[M]. Boston: Springer, 2012.
|
[66] |
VILALTA R, DRISSI Y. A perspective view and survey of meta-learning[J]. Artificial Intelligence Review, 2002, 18(2): 77-95. doi: 10.1023/A:1019956318069
|
[67] |
OSINSKI M, RUMMEL N. Towards successful knowledge integration in online collaboration: an experiment on the role of meta-knowledge[C]//Proceedings of the ACM on Human-Computer Interaction. New York: ACM, 2019: 1-17.
|
[68] |
KIM D J, LIM Y K. Co-performing agent: design for building user-agent partnership in learning and adaptive services[C]//Proceedings of the Conference on Human Factors in Computing Systems. New York: ACM, 2019: 1-14.
|
[69] |
ZHAO T F, CHEN W N, KWONG S, et al. Evolutionary divide-and-conquer algorithm for virus spreading control over networks[J]. IEEE Transactions on Cybernetics, 2021, 51(7): 3752-3766. doi: 10.1109/TCYB.2020.2975530
|
[70] |
LYNN N, ALI M Z, SUGANTHAN P N. Population topo-logies for particle swarm optimization and differential evolution[J]. Swarm and Evolutionary Computation, 2018, 39: 24-35. doi: 10.1016/j.swevo.2017.11.002
|
[71] |
KARI J. Theory of cellular automata: a survey[J]. Theoretical Computer Science, 2005, 334(1/2/3): 3-33.
|
[72] |
KENNEDY J, MENDES R. Population structure and particle swarm performance[C]//Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu: IEEE, 2002: 1671-1676.
|
[73] |
PAYNE J L, EPPSTEIN M J. Evolutionary dynamics on scale-free interaction networks[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(4): 895-912. doi: 10.1109/TEVC.2009.2019825
|
[74] |
GIACOBINI M, TOMASSINI M, TETTAMANZI A. Takeover time curves in random small-world structured populations[C]//Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2005: 1333-1340.
|
[75] |
KIRLEY M, STEWART R. An analysis of the effects of population structure on scalable multiobjective optimization problems[C]//Proceedings of GECCO 2007: Gene-tic and Evolutionary Computation Conference. New York: ACM, 2007: 845-852.
|
[76] |
PAYNE J L, EPPSTEIN M J. Emergent mating topologies in spatially structured genetic algorithms[C]//Procee-dings of the 8th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2006: 207-214.
|
[77] |
WU D, JIANG N, DU W, et al. Particle swarm optimization with moving particles on scale-free networks[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(1): 497-506. doi: 10.1109/TNSE.2018.2854884
|
[78] |
KOROSH M, CLEOTILDE G. Selfishness drives collective cooperation and network formation[C]//Proceedings of ACM Collective Intelligence Conference Series. New York: ACM, 2019: 54/1-4.
|
[79] |
TINÓS R, YANG S. A self-organizing random immigrants genetic algorithm for dynamic optimization problems[J]. Genetic Programming and Evolvable Machines, 2007, 8(3): 255-286. doi: 10.1007/s10710-007-9024-z
|
[80] |
WHITACRE J M, SARKER R A, PHAM Q T. The self-organization of interaction networks for nature-inspired optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(2): 220-230. doi: 10.1109/TEVC.2007.900327
|
[81] |
KROMER P, KUDELKA M, SENKERIK R, et al. Diffe- rential evolution with preferential interaction network[C]// Proceedings of 2017 Congress on Evolutionary Computation. New York: IEEE, 2017: 1916-1923.
|
[82] |
KUŚMIERZ Ł, TOYOIZUMI T. Robust random search with scale-free stochastic resetting[J]. Physical Review E, 2019, 100(3): 32110/1-8.
|
[83] |
FRANCISCO P, WEI Y. Can free resources create economic value?The impact of crowd contributors on venture capital investment to opensource technologies[C]//Proceedings of ACM Collective Intelligence Conference Series. New York: ACM, 2019: 47/1-38.
|
[84] |
ZHAN Z H, ZHANG J, LI Y, et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 2009, 39(6): 1362-1381. doi: 10.1109/TSMCB.2009.2015956
|
[85] |
CHEN W N, ZHANG J, LIN Y, et al. Particle swarm optimization with an aging leader and challengers[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(2): 241-258. doi: 10.1109/TEVC.2011.2173577
|
[86] |
LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295. doi: 10.1109/TEVC.2005.857610
|
[87] |
MCCLAVE H. Deliberative democracy and political education[J]. Irish Educational Studies, Taylor & Francis, 2000, 19(1): 245-256.
|
[88] |
BAINBRIDGE S M. Why a board?Group decisionmaking in corporate governance[J]. Vanderbilt Law Review, 2002, 55(1): 1-55.
|
[89] |
JIANG F, CHENG H, CHEN G. Collective decision-ma-king for dynamic environments with visual occlusions[J]. Swarm Intelligence, 2022, 16: 7-27. doi: 10.1007/s11721-021-00200-x
|
[90] |
SONG A, CHEN W N, GONG Y J, et al. A divide-and-conquer evolutionary algorithm for large-scale virtual network embedding[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(3): 566-580.
|
[91] |
OMIDVAR M N, LI X, MEI Y, et al. Cooperative co-evolution with differential grouping for large scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(3): 378-393.
|
[92] |
CHEN W X, WEISE T, YANG Z Y, et al. Large-scale global optimization using cooperative coevolution with vari-able interaction learning[C]//Parallel Problem Solving from Nature, PPSN XI. Berlin: Springer, 2010: 300-309.
|
[93] |
YANG Z, TANG K, YAO X. Multilevel cooperative coevolution for large scale optimization[C]//Proceedings of CEC 2008: IEEE Congress on Evolutionary Computation. New York: IEEE, 2008: 1663-1670.
|
[94] |
SONG A, YANG Q, CHEN W N, et al. A random-based dynamic grouping strategy for large scale multi-objective optimization[C]//Proceedings of 2016 IEEE Congress on Evolutionary Computation. New York: IEEE, 2016: 468-475.
|
[95] |
LI X, EPITROPAKIS M G, DEB K, et al. Seeking multiple solutions: an updated survey on niching methods and their applications[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(4): 518-538. doi: 10.1109/TEVC.2016.2638437
|
[96] |
BRANKE J, KAUSSLER T, SMIDT C, et al. A multi-popu-lation approach to dynamic optimization problems[C]//Proceedings of Evolutionary Design and Manufacture. Berlin: Springer, 2000: 299-307.
|
[97] |
WEI F F, CHEN W N, YANG Q, et al. A classifier-assisted level-based learning swarm optimizer for expensive optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(2): 219-233. doi: 10.1109/TEVC.2020.3017865
|
[98] |
GUO X Q, CHEN W N, WEI F F, et al. Edge-cloud co-evolutionary algorithms for distributed data-driven optimization problems[J/OL]. IEEE Transactions on Cyberne-tics, (2022-11-29)[2022-12-01]. https://ieeexplore.ieee.org/document/9965951.
|
[99] |
ASKAY D, METCALF L, ROSENBERG L B, et al. Amplifying the collective intelligence of teams with swarm AI[C]//Proceedings of ACM Collective Intelligence Conference Series. New York: ACM, 2019: 1-4.
|
[100] |
VENKATAGIRI S, THEBAULT-SPIEKER J, KOHLER R, et al. GroundTruth: augmenting expert image geolocation with crowdsourcing and shared representations[J]. Proceedings of the ACM on Human-Computer Interaction. New York: ACM, 2019, 3: 107/1-30.
|
[101] |
GUNASEKARAN S S, MOSTAFA S A, AHMAD M S. The emergence of collective intelligence[C]//Procee-dings of ICRⅡS 2013: International Conference on Research and Innovation in Information Systems. New York: IEEE, 2013: 451-456.
|
[102] |
MONTOYA-TORRES J R, LÓPEZ FRANCO J, NIETO ISAZA S, et al. A literature review on the vehicle routing problem with multiple depots[J]. Computers and Industrial Engineering, 2015, 79: 115-129. doi: 10.1016/j.cie.2014.10.029
|
[103] |
PIZZUTI C. Evolutionary computation for community detection in networks: a review[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(3): 464-483. doi: 10.1109/TEVC.2017.2737600
|
[104] |
SRINIVASAN K B, DANESCU-NICULESCU-MIZIL C, LEE L, et al. Content removal as a moderation strategy: compliance and other outcomes in the changemyview community[J]. Proceedings of the ACM on Human-Computer Interaction, 2019, 3: 163/1-21.
|
[105] |
XUE B, ZHANG M, BROWNE W N, et al. A survey on evolutionary computation approaches to feature selection[J]. IEEE Transactions on Evolutionary Computation, 2015, 20(4): 606-626.
|
[106] |
PONSICH A, JAIMES A L, COELLO C A C. A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(3): 321-344. doi: 10.1109/TEVC.2012.2196800
|
[107] |
ALRASHIDI M R, EL-HAWARY M E. A survey of particle swarm optimization applications in electric power systems[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(4): 913-918. doi: 10.1109/TEVC.2006.880326
|
[108] |
BRAEKERS K, RAMAEKERS K, VAN NIEUWENHUYSE I. The vehicle routing problem: state of the art classification and review[J]. Computers and Industrial Engineering, 2016, 99: 300-313. doi: 10.1016/j.cie.2015.12.007
|
[109] |
KARAKATIČ S, PODGORELEC V. A survey of genetic algorithms for solving multi depot vehicle routing problem[J]. Applied Soft Computing Journal, 2015, 27: 519-532. doi: 10.1016/j.asoc.2014.11.005
|
[110] |
JIA Y H, CHEN W N, GU T, et al. A dynamic logistic dispatching system with set-based particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(9): 1607-1621. doi: 10.1109/TSMC.2017.2682264
|
[111] |
TOFIGHI S, TORABI S A, MANSOURI S A. Humanita- rian logistics network design under mixed uncertainty[J]. European Journal of Operational Research, 2016, 250(1): 239-250. doi: 10.1016/j.ejor.2015.08.059
|
[112] |
JIANG Y C, JIANG J C. Understanding social networks from a multiagent perspective[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(10): 2743-2759. doi: 10.1109/TPDS.2013.254
|
[113] |
PIZZUTI C. A multiobjective genetic algorithm to find communities in complex networks[J]. IEEE Transactions on Evolutionary Computation, 2012, 16(3): 418-430. doi: 10.1109/TEVC.2011.2161090
|
[114] |
WEN X, CHEN W N, LIN Y, et al. A maximal clique based multiobjective evolutionary algorithm for overla- pping community detection[J]. IEEE Transactions on Evo- lutionary Computation, 2017, 21(3): 363-377. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7558207
|
[115] |
ROBERTS S T. Commercial content moderation: digital laborers' dirty work[M]. Hawaii: Media Studies Publications, 2016.
|
[116] |
CHANDRASEKHARAN E, GANDHI C, MUSTELIER M W, et al. CrossMod: a cross-community learning-based system to assist reddit moderators[J]. Proceedings of the ACM on Human-Computer Interaction, 2019, 3: 174/1-30.
|
[117] |
SUMMERS E, PUNZALAN R. Bots, seeds and people: web archives as infrastructure[C]//Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. New York: Association for Computing Machinery, 2017: 821-834.
|
[118] |
SEIDEL S, BERENTE N, LINDBERG A, et al. Autonomous tools and design: a triple-loop approach to human- machine learning[J]. Communications of the ACM, 2019, 62(1): 50-57.
|
[119] |
ZHENG L, ALBANO C M, VORA N M, et al. The roles bots play in Wikipedia[J]. Proceedings of the ACM on Human-Computer Interaction, 2019, 3: 215/1-20.
|
[120] |
ZHANG Z X, CHEN W N, JIN H, et al. A preference biobjective evolutionary algorithm for the payment scheduling negotiation problem[J]. IEEE Transactions on Cyberne-tics, 2021, 51(12): 6105-6118. doi: 10.1109/TCYB.2020.2966492
|
[121] |
BRANKE J, NGUYEN S, PICKARDT C W, et al. Automated design of production scheduling heuristics: a review[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(1): 110-124. doi: 10.1109/TEVC.2015.2429314
|
[122] |
JIA Y H, CHEN W N, YUAN H, et al. An intelligent cloud workflow scheduling system with time estimation and adaptive ant colony optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(1): 634-649. doi: 10.1109/TSMC.2018.2881018
|
[123] |
ZHU Z, ZHANG G, LI M, et al. Evolutionary multi-objective workflow scheduling in cloud[J]. IEEE Transactions on Parallel and Distributed Systems, 2016, 27(5): 1344-1357. doi: 10.1109/TPDS.2015.2446459
|
[124] |
CHEN Z G, ZHAN Z H, LIN Y, et al. Multiobjective cloud workflow scheduling: a multiple populations ant colony system approach[J]. IEEE Transactions on Cybernetics, 2019, 49(8): 2912-2926. doi: 10.1109/TCYB.2018.2832640
|
[125] |
FARD H M, PRODAN R, FAHRINGER T. A truthful dynamic workflow scheduling mechanism for commercial multicloud environments[J]. IEEE Transactions on Para-llel and Distributed Systems, 2013, 24(6): 1203-1212. doi: 10.1109/TPDS.2012.257
|
[126] |
HAN Y, GONG D, JIN Y, et al. Evolutionary multiobjective blocking lot-streaming flow shop scheduling with machine breakdowns[J]. IEEE Transactions on Cybernetics, 2019, 49(1): 184-197. doi: 10.1109/TCYB.2017.2771213
|
[127] |
TELIKANI A, GANDOMI A H, SHAHBAHRAMI A. A survey of evolutionary computation for association rule mining[J]. Information Sciences, 2020, 524: 318-352. doi: 10.1016/j.ins.2020.02.073
|
[128] |
HRUSCHKA E R, CAMPELLO R J G B, FREITAS A A, et al. A survey of evolutionary algorithms for clustering[J]. IEEE Transactions on Systems, Man and Cybernetics: Part C, 2009, 39(2): 133-155. doi: 10.1109/TSMCC.2008.2007252
|
[129] |
SUN Y, XUE B, ZHANG M, et al. Automatically designing CNN architectures using the genetic algorithm for image classification[J]. IEEE Transactions on Cyberne-tics, 2020, 50(9): 3840-3854. doi: 10.1109/TCYB.2020.2983860
|
[130] |
SUN Y, WANG H, XUE B, et al. Surrogate-assisted evolutionary deep learning using an end-to-end random fo- rest-based performance predictor[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(2): 350-364. doi: 10.1109/TEVC.2019.2924461
|
[131] |
TSAI J, YIN Z, KWAK J Y, et al. Urban security: game-theoretic resource allocation in networked physical domains[C]//Proceedings of the National Conference on Artificial Intelligence. Washington: AAAI, 2010: 881-886.
|
[132] |
BROWN M, SAISUBRAMANIAN S, VARAKANTHAM P, et al. STREETS: Game-theoretic traffic patrolling with exploration and exploitation[C]//Proceedings of the National Conference on Artificial Intelligence. Washington: AAAI, 2014: 2966-2971.
|
[133] |
ROSENFELD A, KRAUS S. When security games hit traffic: optimal traffic enforcement under one sided uncertainty[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: IJCAI, 2017: 3814-3822.
|
[134] |
ZHANG Y, GUO Q, AN B, et al. Optimal interdiction of urban criminals with the aid of real-time information[C]//Proceedings of the National Conference on Artificial Intelligence. Washington: AAAI, 2019: 1262-1269.
|
[135] |
ZHANG Y, AN B. Computing team-maxmin equilibria in zero-sum multiplayer extensive-form games[C]//Proceedings of the National Conference on Artificial Intelligence. Washington: AAAI, 2020: 2318-2325.
|
[136] |
ZHANG Y, JIANG C, SONG L, et al. Incentive mechanism for mobile crowdsourcing using an optimized tournament model[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(4): 880-892. doi: 10.1109/JSAC.2017.2680798
|
[137] |
HU Z, ZHANG J, LIANG Y, et al. Inference aided reinforcement learning for incentive mechanism design in crowdsourcing[C]//Advances in Neural Information Processing Systems. Massachusetts: MIT Press, 2018: 5507-5517.
|
[138] |
JAGABATHULA S, SUBRAMANIAN L, VENKATARAMAN A. Reputation-based worker filtering in crowdsour-cing[C]//Advances in Neural Information Processing Systems. Massachusetts: MIT Press, 2014: 2492-2500.
|
[139] |
TARABLE A, NORDIO A, LEONARDI E, et al. The importance of worker reputation information in microtask-based crowd work systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2017, 28(2): 558-571.
|
[140] |
XIAO Y, DORFLER F, SCHAAR M. Incentive design in peer review: rating and repeated endogenous matching[J]. IEEE Transactions on Network Science and Engineering, 2019, 6(4): 898-908. doi: 10.1109/TNSE.2018.2877578
|
[141] |
SHI W, CHEN W N, LIN Y, et al. An adaptive estimation of distribution algorithm for multipolicy insurance investment planning[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(1): 1-14. doi: 10.1109/TEVC.2017.2782571
|
[142] |
ASAFUDDOULA M, RAY T, SARKER R. A decomposition-based evolutionary algorithm for many objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(3): 445-460. doi: 10.1109/TEVC.2014.2339823
|
[143] |
FJELL C D, JENSSEN H, CHEUNG W A, et al. Optimization of antibacterial peptides by genetic algorithms and cheminformatics[J]. Chemical Biology and Drug Design, 2011, 77(1): 48-56. doi: 10.1111/j.1747-0285.2010.01044.x
|
[144] |
VPESCETELLI N, CEBRIAN M, RAHWAN I. BeeMe: real-time internet control of situated human agents[J]. Computer, 2020, 53(8): 49-58. doi: 10.1109/MC.2020.2996824
|
1. |
熊文文, 陈俊芳, 王燕, 王勇. 工作气压对氩射频电感耦合等离子体模式转换的影响. 华南师范大学学报(自然科学版). 2019(01): 16-21 .
![]() | |
2. |
张金禾, 周严东, 刘汝兵, 林麒. 低压汞灯等离子体电子密度分布光谱诊断研究. 机电技术. 2015(06): 88-91 .
![]() |