Loading [MathJax]/jax/output/SVG/jax.js
  • Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHAO Wei, GAO Yang. Existence of Positive Solutions for Fractional Differential Equation with Fractional Differential Boundary Value Condition[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 95-101. DOI: 10.6054/j.jscnun.2022090
Citation: ZHAO Wei, GAO Yang. Existence of Positive Solutions for Fractional Differential Equation with Fractional Differential Boundary Value Condition[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 95-101. DOI: 10.6054/j.jscnun.2022090

Existence of Positive Solutions for Fractional Differential Equation with Fractional Differential Boundary Value Condition

More Information
  • Received Date: August 28, 2021
  • Available Online: February 13, 2023
  • The existence of positive solutions for the fractional differential equation with fractional differential boundary value condition {Dv0+u(t)+h(t)f(t,u(t))=0(0<t<1,n1<vn),u(0)=u(0)=u(0)==u(n2)(0)=0(n3),(Dα0+u(t))t=1=m2i=1βi(Dαi0+u(t))t=ηi(1αiαn2) is considered under some conditions, where D0+v is Rimann-Liouvile fractional differential, ηi∈(0, 1), 0 < η1 < η2 < … < ηm-2 < 1, βi∈[0, ∞). Firstly, the Green function for the above fractional differential equation is constructed. The properties of the Green's function are obtained. Secondly, by using the fixed point index theorem on convex functional to calculate the fixed point index, the conclusion that there is at least one positive solution to the above boundary value problem is obtained. Finally, an example is given to illustrate the application of the main theorem.
  • [1]
    薛益民, 戴振祥, 刘洁. 一类Riemann-lioubille型分数阶微分方程正解的存在性[J]. 华南师范大学学报(自然科学版), 2019, 51(2): 105-109. doi: 10.6054/j.jscnun.2019033

    XUE Y M, DAI Z X, LIU J. On the existence of positive solutions to a type of Riemann-Liouville fractional diffe-rential equations[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(2): 105-109. doi: 10.6054/j.jscnun.2019033
    [2]
    SHEN K Y, ZHOU Z F. Positive solutions for fractional di-fferential equations with integral and infinite-point boundary conditions[J]. Mathematic Applicata, 2020, 33(3): 563-571.
    [3]
    张凯斌, 陈鹏玉. Banach空间中分数阶微分方程边值问题正解的存在性[J]. 吉林大学学报(理学报), 2021, 59(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX202101003.htm

    ZHANG K B, CHEN P Y. Existence of positive solutions for boundary value problems of fractional differential equations in Banach spaces[J]. Journal of Jilin University(Science Edition), 2021, 59(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX202101003.htm
    [4]
    尚淑彦, 韩晓玲. 分数阶微分方程积分边值问题正解的存在性[J]. 吉林大学学报(理学版), 2021, 59(3): 444-450. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX202103003.htm

    SHANG S Y, HAN X L. Existence of positive solutions for integral boundary value problems of fractional differential equations[J]. Journal of Jilin University(Science Edition), 2021, 59(3): 444-450. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX202103003.htm
    [5]
    蔡蕙泽, 韩晓玲. 一类非线性分数阶微分方程边值问题正解的存在性[J]. 四川大学学报(自然科学版), 2019, 56(4): 614-620. doi: 10.3969/j.issn.0490-6756.2019.04.006

    CAI H Z, HAN X L. Existence of positive solutions for a class of nonlinear fractional differential equations with boundary values[J]. Journal of Sichuan University(Natural Science Edition), 2019, 56(4): 614-620. doi: 10.3969/j.issn.0490-6756.2019.04.006
    [6]
    白占兵. 分数阶微分方程边值问题理论及应用[M]. 北京: 中国科学技术出版社, 2013.
    [7]
    王永庆, 刘立山. Banach空间中分数阶微分方程m点边值问题的正解[J]. 数学物理学报, 2012, 32A(1): 246-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SXWX201201022.htm

    WANG Y Q, LIU L S. Positive solutions for fractional m-point boundary value problem in Banach spaces[J]. Acta Mathematic Scientia, 2012, 32A(1): 246-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SXWX201201022.htm
    [8]
    张琴. 带有Riemann-Liouville型分数阶导数的分数阶边值问题的正解[J]. 应用泛函分析学报, 2020, 22(1/2): 13-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YYFH2020Z1002.htm

    ZHANG Q. Positive solutions for a fractional boundary value problem with Riemann-Liouville fractional derivatives[J]. Acta Analysis Functionalis Applicata, 2020, 22(1/2): 13-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YYFH2020Z1002.htm
    [9]
    李小龙. 有序Banach空间非线性分数阶边值问题的正解[J]. 四川师范大学学报(自然科学版), 2020, 43(4): 475-479. https://www.cnki.com.cn/Article/CJFDTOTAL-SCSD202004010.htm

    LI X L. Positive solutions of nonlinear fractional boundary value problems in ordered Banach spaces[J]. Journal of Sichuan Normal University(Natural Science), 2020, 43(4): 475-479. https://www.cnki.com.cn/Article/CJFDTOTAL-SCSD202004010.htm
    [10]
    郭福日, 康淑瑰. 一类非线性分数阶微分方程的正解[J]. 济南大学学报(自然科学版), 2019, 33(3): 279-282. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC201903014.htm

    GUO F R, KANG S G. Positive solutions of a class of nonlinear fractional differential equations[J]. Journal of University of Jinan(Science and Technology), 2019, 33(3): 279-282. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC201903014.htm
    [11]
    黄燕萍, 韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSF201803006.htm

    HUANG Y P, WEI Y M. Multiple solutions of multiple-points boundary value problem for a class of factional di-fferential equation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSF201803006.htm
    [12]
    LIU X P, JIA M, GE W G. The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator[J]. Applied Mathematics Letters, 2017, 65: 56-62.
    [13]
    崔亚琼, 康淑瑰, 陈慧琴. 非线性分数阶微分方程的一个正解[J]. 西南师范大学学报(自然科学版), 2017, 42(8): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201708002.htm

    CUI Y Q, KANG S G, CHEN H Q. On a positive solutions to nonlinear fractional differential equations[J]. Journal of Southwest China Normal University(Natural Science Edition), 2017, 42(8): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201708002.htm
    [14]
    ZHANG G W, SUN J X, ZHANG T. Existence of positive solutions for a class of second-order two-point boundary value problem[J]. Positivty, 2008, 12: 547-554.

Catalog

    Article views (192) PDF downloads (47) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return