• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LI Haibo, CHAI Rui, DENG Ningcan, YANG Yue. Study on the Toxicity Difference Between Spherical and Cubic Silver Nanoparticles to Scenedesmus Obliquus[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 68-75. DOI: 10.6054/j.jscnun.2022087
Citation: LI Haibo, CHAI Rui, DENG Ningcan, YANG Yue. Study on the Toxicity Difference Between Spherical and Cubic Silver Nanoparticles to Scenedesmus Obliquus[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 68-75. DOI: 10.6054/j.jscnun.2022087

Study on the Toxicity Difference Between Spherical and Cubic Silver Nanoparticles to Scenedesmus Obliquus

More Information
  • Received Date: September 28, 2021
  • Available Online: February 13, 2023
  • It is not clear whether the Silver nanoparticles (AgNPs) with different morphologies have different toxi-city to Scenedesmus Obliquus. In order to reveal the toxic effects of Scenedesmus Obliquus exposed to different morphologies of silver nanoparticles, Silver Nano Spheres (AgNSs) and Silver Nano Cubes (AgNCs) were exposed to the algae at 0, 5, 10, 15 and 20 mg/L respectively, observing the physiological and biochemical responses of the tested organisms. The results showed that the exposure of AgNSs and AgNCs both had significant toxic effects on Scenedesmus Obliquus, which showed damage of photosynthetic system and enzyme stress reaction: (1) Under 12-48 h exposure, mass concentration of Chlorophyll a in all treatment groups decreased significantly, but there were also obvious differences. When the AgNSs concentration reached 10 mg/L, the Chlorophyll a inhibitory effect could be significantly produced, and when the AgNSs concentration was greater than 10 mg/L, the inhibitory effect remained stable. While AgNCs significantly inhibited Chlorophyll a when the concentration was only 5 mg/L, and the inhibition effect was alleviated at 20 mg/L. (2) There are differences in typical enzyme stress responses between AgNSs and AgNCs exposure: The content of Reactive Oxygen Species (ROS) was significantly lower than that of the latter. The malondialdehyde (MDA) content of AgNSs was higher when the mass concentration of AgNSs and AgNCs were less than 15 mg/L, and the results were opposite when mass concentration of AgNSs and AgNCs were more than 15 mg/L. The superoxide dismutase (SOD) activity of the former remained stable while that of the latter decreased when the mass concentration of AgNSs and AgNCs were above 5 mg/L. (3) The difference of typical enzyme stress response between AgNSs and AgNCs was related to particle size, specific surface area and geometric shape. The results of this study can provide basic data for the emission control of silver nanoparticles in water environment.
  • [1]
    林道辉, 冀静, 田小利, 等. 纳米材料的环境行为与生物毒性[J]. 科学通报, 2009, 54(23): 3590-3604. doi: 10.6054/j.jscnun.2020006

    LIN D H, JI J, TIAN X L, et al. Environmental behavior and toxicity of engineered nanomaterials[J]. Chinese Science Bulletin, 2009, 54(23): 3590-3604. doi: 10.6054/j.jscnun.2020006
    [2]
    蔺春蕾, 李文卓, 吕雅坤, 等. 氨基化纳米银的制备及抗菌性研究[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202001006.htm

    LIN C L, LI W Z, LV Y K, et al. Preparation and antibacterial properties of aminated silver nanoparticles[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(1): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202001006.htm
    [3]
    GERANIO L, HEUBERGER M, NOWACK B. The beha-vior of silver nanotextiles during washing[J]. Environmental Science & Technology, 2009, 43: 8113-8118.
    [4]
    杨婷, 张夏兰, 丁晓雯. 元素形态对食品安全影响的研究进展[J]. 食品与发酵工业, 2018, 44(10): 295-303. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX201810048.htm

    YANG T, ZHANG X L, DING X W. Advances studies of element formation impact on food safety[J]. Food and Fermentation Industries, 2018, 44(10): 295-303. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX201810048.htm
    [5]
    赵宇亮, 柴之芳. 纳米毒理学[M]. 北京: 科学出版社, 2010.
    [6]
    卢坤. 不同尺寸石墨烯在典型生物体内的富集、分布规律及毒性效应研究[D]. 南京: 南京大学, 2018.

    LU K. Bioaccumulation, distribution and toxicity of graphene with different sheet sizes in typical organisms[D]. Nanjing: Nanjing University, 2018.
    [7]
    毛琳. 不同尺寸纳米三氧化钨致小鼠肝肾毒性研究以及褪黑素的保护作用[D]. 武汉: 华中师范大学, 2015.

    MAO L. Study on mouse liver and kidney toxicity induced by different sizes of nano tungsten trioxide and protective effect of melatonin[D]. Wuhan: Central China Normal University, 2015.
    [8]
    董力, 唐宋, 赵康峰, 等. 形状在纳米氧化铝对大鼠脑星形胶质细胞毒性中的影响[C]//中国毒理学会. 中国毒理学会第七次全国会员代表大会暨中国毒理学会第六次中青年学者科技论坛论文摘要. 北京: 中国毒理协会, 2018: 89.
    [9]
    CHRISTIANE B, RASMUS F, YUYA H, et al. Toxicity of silver nanoparticles—Nanoparticle or silver ion?[J]. Toxicolo-gy Letters, 2012, 208(3): 286-292. doi: 10.1016/j.toxlet.2011.11.002
    [10]
    LINDA C S, EDGAR G, ANDREAS S, et al. Shape ma-tters: effects of silver nanospheres and wires on human alveolar epithelial cells[J]. Particle and Fibre Toxicology, 2011, 8: 36/1-15.
    [11]
    XIANG W, ZHAO X J, CHONG H C, et al. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bio availability to cell and lung toxicological potential[J]. Small, 2014, 10(2): 385-398. doi: 10.1002/smll.201301597
    [12]
    HE D, DORANTES-ARANDA J J, WAITE T D. Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects[J]. Environmental Science & Technology, 2012, 46(16): 8731-8738.
    [13]
    DAVID D, ABDALLAH O. Silver nanoparticles toxicity effect on photosystem Ⅱ photochemistry of the green alga Chlamydomonas reinhardtii treated in light and dark conditions[J]. Toxicological & Environmental Chemistry Reviews, 2012, 94(7/8): 1536-1546.
    [14]
    刘锦涛, 马运柱, 刘文胜, 等. 多形貌纳米银粒子的制备工艺研究[J]. 功能材料, 2018, 49(7): 7197-7203. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201807035.htm

    LIU J T, MA Y Z, LIU W S, et al. Preparation of silver nanoparticles with multiform morphologies[J]. Jorunal of Functional Materials, 2018, 49(7): 7197-7203. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201807035.htm
    [15]
    KIM S, BAEK Y W, AN Y J. Assay-dependent effect of silver nanoparticles to Escherichia coli and Bacillus subtilis[J]. Applied Microbiology and Biotechnology, 2011, 92(5): 1045-1052. doi: 10.1007/s00253-011-3611-x
    [16]
    YAN H X, HAN Z Z, ZHAO H, et al. Characterization of calcium deposition induced by Synechocystis sp. PCC6803 in BG11 culture medium[J]. Chinese Journal of Oceano-logy and Limnology, 2014(3): 503-510.
    [17]
    BUSCHMANN J. The OECD guidelines for the testing of chemicals and pesticides[J]. Methods in Molecular Biolo-gy, 2013, 947: 37.
    [18]
    李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
    [19]
    李哲, 李海波, 李英华, 等. 黑磷纳米片制备、表征及其对斜生栅藻的毒性效应[J]. 环境科学学报, 2021, 41(6): 2448-2456. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202106040.htm

    LI Z, LI H B, LI Y H, et al. Preparation and characterization of Black Phosphorus Nanosheets (BPNSs) and its toxic effects on Scenedesmus Obliquus[J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2448-2456. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202106040.htm
    [20]
    王宇航. 两种农药对谷皮菱形藻(Nitzschia palea)毒理效应及代谢影响的研究[D]. 哈尔滨: 哈尔滨师范大学, 2021.

    WANG Y H. Physiological and metabolic response of freshwater diatom Nitaschia palea to two organophosphorus pesticides[D]. Harbin: Harbin Normal University, 2021.
    [21]
    杜春蕾, 张波, 何义亮. C60纳米颗粒物对斜生栅藻生长及影响因素研究[J]. 环境科学与技术, 2017, 40(9): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201709001.htm

    DU C L, ZHANG B, HE Y L. Effects of nC60 and environmental factors on growth of Scenedesmus obliquus[J]. Environmental Science & Technology, 2017, 40(9): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201709001.htm
    [22]
    LOK C N, HO C M, CHEN R, et al. Silver nanoparticles: partial oxidation and antibacterial activities[J]. Journal of Biological Inorganic Chemistry, 2007, 12(4): 527-534.
    [23]
    罗潇宇, 任垠安, 高浩杰, 等. 2种类型多壁碳纳米管对蛋白核小球藻的毒理研究[J]. 生态毒理学报, 2018, 13(6): 333-341. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201806034.htm

    LUO X Y, REN Y A, GAO H J, et al. The toxicology effects of two types of multi-walled carbon nanotubes on the physiology of Chlorella pyrenoidosa[J]. Asian Journal of Ecotoxicology, 2018, 13(6): 333-341. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201806034.htm
    [24]
    ALMEIDA A C, GOMES T, LANGFORD K, et al. Oxidative stress in the algae, Chlamydomonas reinhardtii, exposed to biocides[J]. Aquatic Toxicology, 2017, 189: 50-59.
    [25]
    刘敏, 覃礼堂, 莫凌云, 等. 4种唑类杀菌剂对蛋白核小球藻的急性毒性及其致毒机理[J]. 生态毒理学报, 2021, 16(4): 301-312. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL202104028.htm

    LIU M, QIN L T, MO L Y, et al. Acute toxicity and mechanism of four azole fungicides to Chlorella pyrenoidosa[J]. Asian Journal of Ecotoxicolog, 2021, 16(4): 301-312. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL202104028.htm
    [26]
    LI J, ZHENG X Q, LIU K C, et al. Effect of tetracycline on the growth and nutrient removal capacity of Chlamydomonas reinhardtii in simulated effluent from wastewater treatment plants[J]. Bioresource Technology, 2016, 218: 1163-1169.
    [27]
    SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxi-city mechanism[J]. Nano-micro Letters, 2015, 7(3): 219-242.
    [28]
    YAMAMOTO O. Influence of particle size on the antibacterial activity of zinc oxide[J]. International Journal of Inorganic Materials, 2001, 3(7): 643-646.
    [29]
    马歆茹. 多形貌氧化锌对变异链球菌的抑制作用研究[D]. 遵义: 遵义医科大学, 2021.

    MA X R. Research onbacteriostasis effect of multi-morphology zinc oxide on Streptococcus mutans[D]. Zunyi: Zunyi Medical University, 2021.
  • Cited by

    Periodical cited type(6)

    1. 陶从辉,高青山,赵梦琳. 改进U-Net网络的高分辨率遥感影像建筑物提取方法. 地理空间信息. 2025(01): 9-12 .
    2. 周翔,罗爽,王成. 基于遥感智能解译技术的围堰溃决洪水淹没分析——以旭龙水电站为例. 水利水电快报. 2024(05): 111-116 .
    3. 刘冠,邵继中,王宇琪,张雪茵,吕欣蓓. 风景园林图像与图形在深度学习中的应用分析及未来展望. 南京师大学报(自然科学版). 2024(02): 44-53 .
    4. 周荣荣,刘扬,周一凡,冯亚东,邹丹. 基于语义分割的遥感影像建筑物自动提取方法. 河南科学. 2023(04): 612-618 .
    5. 李佳优,董琰,郭俊,陈芸芝. 级联融合边缘特征的高分辨率遥感影像道路提取. 贵州大学学报(自然科学版). 2023(06): 33-39+52 .
    6. 伊力哈木·亚尔买买提,邓皓,谢丽蓉. 基于改进YOLOv4的太阳能电池板缺陷检测. 华南师范大学学报(自然科学版). 2023(05): 21-30 .

    Other cited types(4)

Catalog

    Article views (142) PDF downloads (36) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return