Citation: | DONG Qizheng, ZHANG Wenbo, TIAN Binglong. Improvement of Luminescent Properties of NaMgBO3∶Ce3+ Phosphors by Compositing YBO3∶Ce3+[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 37-43. DOI: 10.6054/j.jscnun.2022083 |
[1] |
ZHANG Q, WANG X, WANG Y. Full-visible-spectrum lighting realized by a novel Eu2+-doped cyan-emitting borosilicate phosphor[J]. CrystEngComm, 2020, 22(28): 4702-4709. doi: 10.1039/D0CE00794C
|
[2] |
LIU Q, XIONG P, LIU X, et al. Deep red SrLaGa3O7∶Mn4+ for near ultraviolet excitation of white light LEDs[J]. Journal of Materials Chemistry C, 2021, 9(11): 3969-3977. doi: 10.1039/D0TC05744D
|
[3] |
DONG Q, XIONG P, YANG J, et al. Bismuth activated blue phosphor with high absorption efficiency for white LEDs[J]. Journal of Alloys and Compounds, 2021, 885: 160960/1-9.
|
[4] |
YANG Z, JI C, ZHANG G, et al. Tunable blue-green color emission and energy transfer of Sr3NaSc(PO4)3F∶Eu2+, Tb3+ phosphors with near-UV broad band excited for white LEDs[J]. Journal of Luminescence, 2019, 206: 585-592. doi: 10.1016/j.jlumin.2018.10.078
|
[5] |
FENG H, XU H, FENG H, et al. Tuning photoluminescence in the Ce3+/Tb3+ doped Ca2MgSi2O7 phosphors[J]. Optik, 2019, 193: 162967/1-6.
|
[6] |
BOBADE D, PARAUHA Y R, DHOBLE S, et al. Structural and luminescence study of Ce3+ and Eu3+ doped ZnAl12O19 nano-structured novel phosphors[J]. Optik, 2021, 227: 166119/1-10.
|
[7] |
KHAN Z, INGALE N, OMANWAR S. Synthesis and thermoluminescence properties of rare earth-doped NaMgBO3 phosphor[J]. Environmental Science and Pollution Research, 2016, 23(10): 9295-9302. doi: 10.1007/s11356-015-4993-6
|
[8] |
ZHONG J, ZHUO Y, HARIYANI S, et al. Closing the cyan gap toward full-spectrum LED lighting with NaMgBO3∶Ce3+[J]. Chemistry of Materials, 2019, 32(2): 882-888.
|
[9] |
XUE J, YU Z, NOH H M, et al. Ce3+/Tb3+-coactived NaMgBO3 phosphors toward versatile applications in white LED, FED, and optical anti-counterfeiting[J]. Journal of the American Ceramic Society, 2021, 104(10): 5086-5098. doi: 10.1111/jace.17755
|
[10] |
SONG J, ZHAO W, ZHANG H, et al. Energy transfer and ratiometric temperature sensing based on the dual-emitting NaMgBO3∶Ce3+, Mn2+ phosphor[J]. Journal of Luminescence, 2021, 232: 117858/1-7.
|
[11] |
SRIVASTAVA S, BEHERA S K, NAYAK B B. Optimization and photoluminescence behaviour of terbium doped YBO3 phosphors[J]. Optical Materials, 2020, 107: 110178/1-7.
|
[12] |
SYU J R, KUMAR S, DAS S, et al. Microemulsion-mediated synthesis and characterization of YBO3∶Ce3+ Phosphors[J]. Journal of the American Ceramic Society, 2012, 95(6): 1814-1817. doi: 10.1111/j.1551-2916.2012.05223.x
|
[13] |
PARK S J, JE B S, JANG J W, et al. Green and red emitting YBO3: Ln3+ (Ln=Eu, Tb) phosphors for detection of latent fingerprint[J]. Journal of Alloys and Compounds, 2019, 789: 367-374. doi: 10.1016/j.jallcom.2019.03.029
|
[14] |
LIU J, ZHAO W, WANG B, et al. Synthesis and enhanced photocatalytic activity of {1010} faceted hexagonal YBO3[J]. Chemical Physics Letters, 2019, 728: 62-69. doi: 10.1016/j.cplett.2019.04.071
|
[15] |
CHEN Y, ZHANG J. Investigation on luminescence of bifunctional Y4.67(SiO4)3O∶Ce3+/Tb3+/Eu3+ phosphors[J]. Journal of Luminescence, 2020, 218: 116842/1-8.
|
[16] |
PASIN'SKI D, SOKOLNICKI J. Broadband orange phosphor by energy transfer between Ce3+ and Mn2+ in Ca3Al2Ge3O12 garnet host[J]. Journal of Alloys and Compounds, 2019, 786: 808-816. doi: 10.1016/j.jallcom.2019.01.340
|
[17] |
KANG L, WANG H, LI X, et al. Thermal quenching and color tuning of Ce3+, Mn2+ co-doped Ba2LuAl3Si2O12 for high quality white-LED[J]. Journal of Alloys and Compounds, 2021, 859: 157853/1-9.
|
[18] |
LENG Z, ZHANG D, BAI H, et al. Site occupancy and photoluminescence properties of cyan-emitting K2Ca2Si2O7: Bi3+ phosphor for white light emitting diodes[J]. Optical Materials, 2021, 118: 111293/1-8.
|
[19] |
ZHENG J, CHENG Q, WU S, et al. An efficient blue-emitting Sr5(PO4)3Cl∶Eu2+ phosphor for application in near-UV white light-emitting diodes[J]. Journal of Materials Chemistry C, 2015, 3(42): 11219-11227. doi: 10.1039/C5TC02482J
|
[20] |
LOHE P, NANDANWAR D, BELSARE P, et al. Cyan emitting Ca3Sc2Si1.5Ge1.5O12∶Ce3+ phosphor with 10.4 ns lifetime[J]. Journal of Luminescence, 2019, 216: 116744/1-6.
|
[21] |
WU X, LIU L, XIA M, et al. Enhance the luminescence properties of Ca14Al10Zn6O35: Ti4+ phosphor via cation vacancies engineering of Ca2+ and Zn2+[J]. Ceramics International, 2019, 45(8): 9977-9985. doi: 10.1016/j.ceramint.2019.02.041
|
[22] |
ZHENG B, ZHANG X, ZHANG D, et al. Ultra-wideband phosphor Mg2Gd8(SiO4)6O2∶Ce3+, Mn2+: energy transfer and pressure-driven color tuning for potential applications in LEDs and pressure sensors[J]. Chemical Engineering Journal, 2022, 427: 131897/1-15.
|
[23] |
LIANG J, SUN L, WANG S, et al. Filling the cyan gap toward full-visible-spectrum LED lighting with Ca2LaHf2Al3O12∶Ce3+ broadband green phosphor[J]. Journal of Alloys and Compounds, 2020, 836: 155469/1-7.
|
[24] |
WANG S, DEVAKUMAR B, SUN Q, et al. Efficient green-emitting Ca2GdZr2Al3O12∶Ce3+, Tb3+ phosphors for near-UV-pumped high-CRI warm-white LEDs[J]. Journal of Luminescence, 2020, 220: 117012/1-10.
|
[25] |
SUN L, DEVAKUMAR B, LIANG J, et al. Highly efficient Ce3+→Tb3+ energy transfer induced bright narrowband green emissions from garnet-type Ca2YZr2(AlO4)3∶Ce3+, Tb3+ phosphors for white LEDs with high color rendering index[J]. Journal of Materials Chemistry C, 2019, 7(34): 10471-10480.
|