• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
FANG Jiarui, YIN Tao, HE Liang. Quantum Phases of Many-Body Polaron in Mott Insulator Regime in Optical Lattice[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 23-27. DOI: 10.6054/j.jscnun.2022081
Citation: FANG Jiarui, YIN Tao, HE Liang. Quantum Phases of Many-Body Polaron in Mott Insulator Regime in Optical Lattice[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 23-27. DOI: 10.6054/j.jscnun.2022081

Quantum Phases of Many-Body Polaron in Mott Insulator Regime in Optical Lattice

More Information
  • Received Date: May 14, 2021
  • Available Online: February 13, 2023
  • The quantum phases of many-body polaron was investigated in two-dimensional optical lattices in Mott Insulator regime. The polaron is a quasi-particle formed by the coupling between bosons in optical lattices and BEC phonons. The effective Hamiltonian of polarons is derived through Lang-Firsov transformation. The system can be described by extended Bose-Hubbard Model. In Mott Insulator regime, the Hamiltonian was solved directly so that the quantum phases of the system can be obtained for single-component case with filling factors of 1/2 and 1/4. By using Hartree-Fock approximation, more quantum phases for two-component case with filling factors of 1/2 and 1/4 can be found. Non-trivial quantum phases was predicted in single-component and two-component systems of polarons.
  • [1]
    FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6): 467-488. doi: 10.1007/BF02650179
    [2]
    李志, 黄育蕾, 陈李梅, 等. 冷原子系统中不同色散准粒子波包动力学的模拟[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 1-5. doi: 10.6054/j.jscnun.2019077

    LI Z, HUANG Y L, CHEN L M, et al. Simulation of wave packet dynamics of quasiparticles with different dispersions in cold atomic system[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(5): 1-5. doi: 10.6054/j.jscnun.2019077
    [3]
    黄肖健, 许文刚, 廖开宇, 等. 六角晶格中Dirac准粒子的动力学模拟与操控[J]. 华南师范大学学报(自然科学版), 2019, 51(2): 7-13. http://journal-n.scnu.edu.cn/article/id/4515

    HUANG X J, XU W G, LIAO K Y, et al. Simulation and manipulation of dirac quasiparticles' dynamics in a hexagonal lattice[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(2): 7-13. http://journal-n.scnu.edu.cn/article/id/4515
    [4]
    GUENTER K, STOEFERLE T, MORITZ H, et al. Bose-Fermi mixtures in a three-dimensional optical lattice[J]. Physical Review Letters, 2006, 96(18): 180402/1-5. doi: 10.1007/s00340-010-4074-y
    [5]
    SCHIROTZEK A, WU C H, SOMMER A, et al. Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms[J]. Physical Review Letters, 2009, 102(23): 230402/1-8. doi: 10.1103/PhysRevLett.102.230402
    [6]
    GRUSDT F, SHASHI A, ABANIN D, et al. Bloch oscillations of bosonic lattice polarons[J]. Physical Review A, 2014, 90(6): 063610/1-25. http://cmt.harvard.edu/demler/PUBLICATIONS/ref216.pdf
    [7]
    LEVINSEN J, PARISH M M, BRUUN G M. Impurity in a Bose-Einstein condensate and the Efimov effect[J]. Physical Review Letters, 2015, 115(12): 125302/1-6. https://arxiv.org/abs/1505.04530
    [8]
    HU M G, VAN DE GRAAFF M J, KEDAR D, et al. Bose polarons in the strongly interacting regime[J]. Physical Review Letters, 2016, 117(5): 055301/1-6.
    [9]
    HERRERA F, MADISON K W, KREMS R V, et al. Investigating polaron transitions with polar molecules[J]. Physical Review Letters, 2013, 110(22): 223002/1-15. http://groups.chem.ubc.ca/krems/publications/prl2013.pdf
    [10]
    GULLANS M, TIECKE T G, CHANG D E, et al. Nanoplasmonic lattices for ultracold atoms[J]. Physical Review Letters, 2012, 109(23): 3665-3670. https://dash.harvard.edu/bitstream/handle/1/11870335/89388197.pdf?sequence=1
    [11]
    BISSBORT U, COCKS D, NEGRETTI A, et al. Emulating solid-state physics with a hybrid system of ultracold ions and atoms[J]. Physical Review Letters, 2013, 111(8): 080501/1-8. https://researchonline.jcu.edu.au/34731/
    [12]
    SCELLE R, RENTROP T, TRAUTMANN A, et al. Motional coherence of fermions immersed in a bose gas[J]. Physical Review Letters, 2013, 111(7): 070401/1-5. https://arxiv.org/pdf/1306.3308v2
    [13]
    HUBENER A, SNOEK M, HOFSTETTER W. Magnetic phases of two-component ultracold bosons in an optical lattice[J]. Physical Review, 2009, 80(24): 245109/1-6.
    [14]
    HU W J, TONG N H. Dynamical mean-field theory for the bose-hubbard model[J]. Physical Review B, 2009, 80(24): 308-310.
    [15]
    ANDERS P, GULL E, POLLET L, et al. Dynamical mean field solution of the bose-hubbard model[J]. Physical Review Letters, 2010, 105(9): 096402/1-10.
    [16]
    MARIN B, LODE P. Mean-field phase diagram of the bose-fermi hubbard model[J]. Physical Review B, 2014, 89(9): 094502/1-12.
    [17]
    LYKOS P, PRATT G W. Discussion on The hartree-fock approximation[J]. Review of Modern Physics, 1963, 35(3): 496-501.
    [18]
    CAPOGROSSO-SANSONE B, TREFZGER C, LEWENSTEIN M, et al. Quantum phases of cold polar molecules in 2D optical lattices[J]. Physical Review Letters, 2010, 104(12): 125301/1-4.
  • Cited by

    Periodical cited type(2)

    1. 周伟,丁雪莹,谢志强. 考虑柔性设备加工能力的综合调度算法. 华南师范大学学报(自然科学版). 2024(02): 110-118 .
    2. 胡欣,沈伟,李伟,王兴龙,陈逸君. 基于改进边缘算法的通信光缆设备智能检测技术研究. 粘接. 2024(10): 140-144 .

    Other cited types(0)

Catalog

    Article views (210) PDF downloads (89) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return