Citation: | FANG Jiarui, YIN Tao, HE Liang. Quantum Phases of Many-Body Polaron in Mott Insulator Regime in Optical Lattice[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 23-27. DOI: 10.6054/j.jscnun.2022081 |
[1] |
FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6): 467-488. doi: 10.1007/BF02650179
|
[2] |
李志, 黄育蕾, 陈李梅, 等. 冷原子系统中不同色散准粒子波包动力学的模拟[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 1-5. doi: 10.6054/j.jscnun.2019077
LI Z, HUANG Y L, CHEN L M, et al. Simulation of wave packet dynamics of quasiparticles with different dispersions in cold atomic system[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(5): 1-5. doi: 10.6054/j.jscnun.2019077
|
[3] |
黄肖健, 许文刚, 廖开宇, 等. 六角晶格中Dirac准粒子的动力学模拟与操控[J]. 华南师范大学学报(自然科学版), 2019, 51(2): 7-13. http://journal-n.scnu.edu.cn/article/id/4515
HUANG X J, XU W G, LIAO K Y, et al. Simulation and manipulation of dirac quasiparticles' dynamics in a hexagonal lattice[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(2): 7-13. http://journal-n.scnu.edu.cn/article/id/4515
|
[4] |
GUENTER K, STOEFERLE T, MORITZ H, et al. Bose-Fermi mixtures in a three-dimensional optical lattice[J]. Physical Review Letters, 2006, 96(18): 180402/1-5. doi: 10.1007/s00340-010-4074-y
|
[5] |
SCHIROTZEK A, WU C H, SOMMER A, et al. Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms[J]. Physical Review Letters, 2009, 102(23): 230402/1-8. doi: 10.1103/PhysRevLett.102.230402
|
[6] |
GRUSDT F, SHASHI A, ABANIN D, et al. Bloch oscillations of bosonic lattice polarons[J]. Physical Review A, 2014, 90(6): 063610/1-25. http://cmt.harvard.edu/demler/PUBLICATIONS/ref216.pdf
|
[7] |
LEVINSEN J, PARISH M M, BRUUN G M. Impurity in a Bose-Einstein condensate and the Efimov effect[J]. Physical Review Letters, 2015, 115(12): 125302/1-6. https://arxiv.org/abs/1505.04530
|
[8] |
HU M G, VAN DE GRAAFF M J, KEDAR D, et al. Bose polarons in the strongly interacting regime[J]. Physical Review Letters, 2016, 117(5): 055301/1-6.
|
[9] |
HERRERA F, MADISON K W, KREMS R V, et al. Investigating polaron transitions with polar molecules[J]. Physical Review Letters, 2013, 110(22): 223002/1-15. http://groups.chem.ubc.ca/krems/publications/prl2013.pdf
|
[10] |
GULLANS M, TIECKE T G, CHANG D E, et al. Nanoplasmonic lattices for ultracold atoms[J]. Physical Review Letters, 2012, 109(23): 3665-3670. https://dash.harvard.edu/bitstream/handle/1/11870335/89388197.pdf?sequence=1
|
[11] |
BISSBORT U, COCKS D, NEGRETTI A, et al. Emulating solid-state physics with a hybrid system of ultracold ions and atoms[J]. Physical Review Letters, 2013, 111(8): 080501/1-8. https://researchonline.jcu.edu.au/34731/
|
[12] |
SCELLE R, RENTROP T, TRAUTMANN A, et al. Motional coherence of fermions immersed in a bose gas[J]. Physical Review Letters, 2013, 111(7): 070401/1-5. https://arxiv.org/pdf/1306.3308v2
|
[13] |
HUBENER A, SNOEK M, HOFSTETTER W. Magnetic phases of two-component ultracold bosons in an optical lattice[J]. Physical Review, 2009, 80(24): 245109/1-6.
|
[14] |
HU W J, TONG N H. Dynamical mean-field theory for the bose-hubbard model[J]. Physical Review B, 2009, 80(24): 308-310.
|
[15] |
ANDERS P, GULL E, POLLET L, et al. Dynamical mean field solution of the bose-hubbard model[J]. Physical Review Letters, 2010, 105(9): 096402/1-10.
|
[16] |
MARIN B, LODE P. Mean-field phase diagram of the bose-fermi hubbard model[J]. Physical Review B, 2014, 89(9): 094502/1-12.
|
[17] |
LYKOS P, PRATT G W. Discussion on The hartree-fock approximation[J]. Review of Modern Physics, 1963, 35(3): 496-501.
|
[18] |
CAPOGROSSO-SANSONE B, TREFZGER C, LEWENSTEIN M, et al. Quantum phases of cold polar molecules in 2D optical lattices[J]. Physical Review Letters, 2010, 104(12): 125301/1-4.
|
1. |
周伟,丁雪莹,谢志强. 考虑柔性设备加工能力的综合调度算法. 华南师范大学学报(自然科学版). 2024(02): 110-118 .
![]() | |
2. |
胡欣,沈伟,李伟,王兴龙,陈逸君. 基于改进边缘算法的通信光缆设备智能检测技术研究. 粘接. 2024(10): 140-144 .
![]() |