Processing math: 100%
  • Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YANG Rongling, MA Dongkui. A Note on a Classical Ergodic Theorem for IFS[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(4): 109-112. DOI: 10.6054/j.jscnun.2022064
Citation: YANG Rongling, MA Dongkui. A Note on a Classical Ergodic Theorem for IFS[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(4): 109-112. DOI: 10.6054/j.jscnun.2022064

A Note on a Classical Ergodic Theorem for IFS

More Information
  • Received Date: January 09, 2022
  • Available Online: September 21, 2022
  • The properties of the set of points where Elton's theorem does not hold are given. By constructing cylinder sets in symbolic space, it is proved that for a contractive IFS with probabilities and a continuous function g sa-tisfying that Xg dν1Xg dν2, where ν1 and ν2 are any two different invariant measures of the IFS, the zero measure invariant set composed of points where Elton's theorem does not hold is either empty or carries full Hausdorff dimension and topological entropy.
  • [1]
    ADLER R L, KONHEIM A G, MCANDREW M H. Topolo-gical entropy[J]. Transactions of the American Mathematical Society, 1965, 114: 309-319. doi: 10.1090/S0002-9947-1965-0175106-9
    [2]
    BOWEN R. Entropy for group endomorphisms and homogeneous spaces[J]. Transactions of the American Mathematical Society, 1971, 153: 404-414.
    [3]
    BOWEN R. Topological entropy for noncompact sets[J]. Transactions of the American Mathematical Society, 1973, 184: 125-136. doi: 10.1090/S0002-9947-1973-0338317-X
    [4]
    BARREIRA L, SCHMELING J. Invariant sets with zero measure and full Hausdorff dimension[J]. Electronic Research Announcements of the American Mathematical Society, 1997, 3: 114-118. doi: 10.1090/S1079-6762-97-00035-8
    [5]
    PESIN Y B. Dimenssion theory in dynamical systems[M]. Chicago: University of Chicago Press, 1997.
    [6]
    CHEN E, KVPPER T, SHU L. Topological entropy for divergence points[J]. Ergodic Theory and Dynamical Systems, 2005, 25(4): 1173-1208. doi: 10.1017/S0143385704000872
    [7]
    TIAN X. Different asymptotic behavior versus same dynamical complexity: recurrence & (ir)regularity[J]. Advances in Mathematics, 2016, 288: 464-526. doi: 10.1016/j.aim.2015.11.006
    [8]
    ZHU L, MA D K. The upper capacity topological entropy of free semigroup actions for certain non-compact sets[J]. Journal of Statistical Physics, 2021, 182(1): 19-22. doi: 10.1007/s10955-020-02693-y
    [9]
    钟兴富, 陈志景. Bowen估计熵的变分原理[J]. 中国科学: 数学, 2021, 51(8): 1213-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK202108001.htm

    ZHONG X F, CHEN Z J. A variational principle for Bowen estimation entropy[J]. Scientia Sinica(Mathematica), 2021, 51(8): 1213-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK202108001.htm
    [10]
    匡锐, 梁先娟. 具有零拓扑熵的图映射的攀援集的测度[J]. 数学进展, 2021, 50(2): 315-319. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJZ202102016.htm

    KUANG R, LIANG X J. On the measure of scrambled sets of graph maps with zero topological entropy[J]. Advances in Mathematics, 2021, 50(2): 315-319. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJZ202102016.htm
    [11]
    MA D K, WU M. On Hausdorff dimension and topological entropy[J]. Fractals, 2010, 18(3): 363-370. doi: 10.1142/S0218348X10004956
    [12]
    BARREIRA L, PESIN Y, SCHMELING J. On a general concept of multifractality: multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity[J]. Chaos, 1997, 7(1): 89-106. doi: 10.1063/1.166242
    [13]
    ELTON J. An ergodic theorem for iterated maps[J]. Ergo-dic Theory and Dynamical Systems, 1987, 7: 481-488. doi: 10.1017/S0143385700004168
    [14]
    HUTCHINSON J E. Fractals and self-similarity[J]. Indiana University Mathematics Journal, 1981, 30: 713-747. doi: 10.1512/iumj.1981.30.30055
    [15]
    WALTERS P. An introduction to Ergodic theory[M]. New York, Berlin: Springer, 1982.
  • Cited by

    Periodical cited type(2)

    1. 熊文文, 陈俊芳, 王燕, 王勇. 工作气压对氩射频电感耦合等离子体模式转换的影响. 华南师范大学学报(自然科学版). 2019(01): 16-21 .
    2. 张金禾, 周严东, 刘汝兵, 林麒. 低压汞灯等离子体电子密度分布光谱诊断研究. 机电技术. 2015(06): 88-91 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return