Citation: | YANG Rongling, MA Dongkui. A Note on a Classical Ergodic Theorem for IFS[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(4): 109-112. DOI: 10.6054/j.jscnun.2022064 |
[1] |
ADLER R L, KONHEIM A G, MCANDREW M H. Topolo-gical entropy[J]. Transactions of the American Mathematical Society, 1965, 114: 309-319. doi: 10.1090/S0002-9947-1965-0175106-9
|
[2] |
BOWEN R. Entropy for group endomorphisms and homogeneous spaces[J]. Transactions of the American Mathematical Society, 1971, 153: 404-414.
|
[3] |
BOWEN R. Topological entropy for noncompact sets[J]. Transactions of the American Mathematical Society, 1973, 184: 125-136. doi: 10.1090/S0002-9947-1973-0338317-X
|
[4] |
BARREIRA L, SCHMELING J. Invariant sets with zero measure and full Hausdorff dimension[J]. Electronic Research Announcements of the American Mathematical Society, 1997, 3: 114-118. doi: 10.1090/S1079-6762-97-00035-8
|
[5] |
PESIN Y B. Dimenssion theory in dynamical systems[M]. Chicago: University of Chicago Press, 1997.
|
[6] |
CHEN E, KVPPER T, SHU L. Topological entropy for divergence points[J]. Ergodic Theory and Dynamical Systems, 2005, 25(4): 1173-1208. doi: 10.1017/S0143385704000872
|
[7] |
TIAN X. Different asymptotic behavior versus same dynamical complexity: recurrence & (ir)regularity[J]. Advances in Mathematics, 2016, 288: 464-526. doi: 10.1016/j.aim.2015.11.006
|
[8] |
ZHU L, MA D K. The upper capacity topological entropy of free semigroup actions for certain non-compact sets[J]. Journal of Statistical Physics, 2021, 182(1): 19-22. doi: 10.1007/s10955-020-02693-y
|
[9] |
钟兴富, 陈志景. Bowen估计熵的变分原理[J]. 中国科学: 数学, 2021, 51(8): 1213-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK202108001.htm
ZHONG X F, CHEN Z J. A variational principle for Bowen estimation entropy[J]. Scientia Sinica(Mathematica), 2021, 51(8): 1213-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK202108001.htm
|
[10] |
匡锐, 梁先娟. 具有零拓扑熵的图映射的攀援集的测度[J]. 数学进展, 2021, 50(2): 315-319. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJZ202102016.htm
KUANG R, LIANG X J. On the measure of scrambled sets of graph maps with zero topological entropy[J]. Advances in Mathematics, 2021, 50(2): 315-319. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJZ202102016.htm
|
[11] |
MA D K, WU M. On Hausdorff dimension and topological entropy[J]. Fractals, 2010, 18(3): 363-370. doi: 10.1142/S0218348X10004956
|
[12] |
BARREIRA L, PESIN Y, SCHMELING J. On a general concept of multifractality: multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity[J]. Chaos, 1997, 7(1): 89-106. doi: 10.1063/1.166242
|
[13] |
ELTON J. An ergodic theorem for iterated maps[J]. Ergo-dic Theory and Dynamical Systems, 1987, 7: 481-488. doi: 10.1017/S0143385700004168
|
[14] |
HUTCHINSON J E. Fractals and self-similarity[J]. Indiana University Mathematics Journal, 1981, 30: 713-747. doi: 10.1512/iumj.1981.30.30055
|
[15] |
WALTERS P. An introduction to Ergodic theory[M]. New York, Berlin: Springer, 1982.
|
1. |
熊文文, 陈俊芳, 王燕, 王勇. 工作气压对氩射频电感耦合等离子体模式转换的影响. 华南师范大学学报(自然科学版). 2019(01): 16-21 .
![]() | |
2. |
张金禾, 周严东, 刘汝兵, 林麒. 低压汞灯等离子体电子密度分布光谱诊断研究. 机电技术. 2015(06): 88-91 .
![]() |