• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
DU Jia, WANG Qinghe, CAI Shenwen, FAN Hai, LI Yahui, CHEN Jun, ZENG Boping. A DFT Study of Mn(Ⅱ) Adsorption on Illite Surfaces[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(4): 25-31. DOI: 10.6054/j.jscnun.2022054
Citation: DU Jia, WANG Qinghe, CAI Shenwen, FAN Hai, LI Yahui, CHEN Jun, ZENG Boping. A DFT Study of Mn(Ⅱ) Adsorption on Illite Surfaces[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(4): 25-31. DOI: 10.6054/j.jscnun.2022054

A DFT Study of Mn(Ⅱ) Adsorption on Illite Surfaces

  • In order to explore the adsorption mechanism of Mn(Ⅱ) on illite surfaces, the density functional theory (DFT) was used to simulate the adsorption of Mn(Ⅱ) on the (001) and (010) surfaces. The active site, adsorption configuration, charge and state density were studied, and the following conclusions were obtained. On the (001) surface, Mn(Ⅱ) was adsorbed preferentially on the hole of silicon oxygen ring and formed a covalent bond with the active oxygen OS1, with an adsorption energy of -262.55 kJ/mol. On the (010) surface, Mn(Ⅱ) formed 1 to 3 covalent bonds with OS from hydroxyl groups, and the adsorption energy increased with the increase of covalent bonds. The most stable adsorption configuration was Mn(Ⅱ) adsorbed on the holes between three ≡Al—OH groups, and the adsorption energy was -533.62 kJ/mol. There were covalent bond interactions and electrostatic interactions between Mn(Ⅱ) and the (001) and (010) surfaces. The adsorption energy of Mn(Ⅱ) on (001) surface was less than that on the (010) surface. The adsorption of Mn(Ⅱ) on the (001) surface was mainly electrostatic interaction and that on the (010) surface was mainly covalent interaction. The formation of the surface covalent bond between Mn(Ⅱ) and illite was mainly due to the interaction between the 4s orbital of Mn and the 2p orbital of OS. The results can provide a theoretical basis for the development of clay adsorption materials or the purification of contaminated soil.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return