• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHEN Pengfei, FENG Jieyi, WU Di. The Preparation and Performance of Li6.4La3Zr1.4Ta0.6O12-based Lithium Boron Anode for the High Energy Density All-solid-state Lithium Metal Battery[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 28-33. DOI: 10.6054/j.jscnun.2022040
Citation: CHEN Pengfei, FENG Jieyi, WU Di. The Preparation and Performance of Li6.4La3Zr1.4Ta0.6O12-based Lithium Boron Anode for the High Energy Density All-solid-state Lithium Metal Battery[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 28-33. DOI: 10.6054/j.jscnun.2022040

The Preparation and Performance of Li6.4La3Zr1.4Ta0.6O12-based Lithium Boron Anode for the High Energy Density All-solid-state Lithium Metal Battery

More Information
  • Received Date: March 10, 2022
  • Available Online: July 28, 2022
  • The lithium-boron composite material was prepared by compounding molten metal lithium and high-purity boron powder and applied to solid electrolyte (Li6.4La3Zr1.4Ta0.6O12, LLZTO) to make the solid-state symme-tric battery. A comparative study of the electrochemical performance of the lithium-boron composite solid-state symmetric battery and the lithium metal solid-state symmetry battery was conducted. The results showed that the interface impedance (about 6 Ω/cm2) of the lithium-boron composite solid-state battery is much smaller than that of the metal lithium solid-state battery (about 103 Ω/cm2), indicating that the lithium-boron composite electrode and the solid electrolyte were in good contact. The test of charge-discharge under the current density of at 400 μA/cm2 was carried out. The lithium-boron composite solid-state symmetric battery could be stably cycled for more than 250 times while the metal lithium solid-state battery quickly failed. The critical current density of the lithium-boron composite solid-state symmetric battery at a capacity of 0.1 mAh reached 2 700 μA/cm2 and the capacity could reach 12 mAh/cm2 under the current density of 0.1 mA/cm2. The lithium-boron composite solid-state symmetric battery had excellent cycling performance.
  • [1]
    TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367. doi: 10.1038/35104644
    [2]
    XU W, WANG J, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy Environmental Science, 2014, 7(2): 513-537. doi: 10.1039/C3EE40795K
    [3]
    CHENG X, ZHANG R, ZHAO C, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Che-mical Reviews, 2017, 117(15): 10403-10473. doi: 10.1021/acs.chemrev.7b00115
    [4]
    AMINE K, KANNO R, TZENG Y. Rechargeable lithium batteries and beyond: progress, challenges, and future directions[J]. MRS Bulletin, 2014, 39(5): 395-401. doi: 10.1557/mrs.2014.62
    [5]
    苏炽权, 汝强, 石正禄, 等. 生物炭负载金属硒化物复合材料的储锂性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201905006.htm

    SU C Q, RU Q, SHI Z L, et al. The lithium storage performance of biochar-loaded metal selenide composite material[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(5): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201905006.htm
    [6]
    CHENG X, ZHAO C, YAO Y, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes[J]. Chem, 2019, 5(1): 74-96. doi: 10.1016/j.chempr.2018.12.002
    [7]
    LOULI A J, ELDESOKY A, WEBER R, et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis[J]. Nature Energy, 2020, 5(9): 693-702. doi: 10.1038/s41560-020-0668-8
    [8]
    DU M, SUN Y, LIU B, et al. Smartconstruction of an intimate lithium garnet interface for all-solid-state batteries by tuning the tension of molten lithium[J]. Advanced Functional Materials, 2021, 31: 2101556/1-8.
    [9]
    DUAN J, WU W, NOLAN A M, et al. Lithium-graphite paste: an interface compatible anode for solid-state batte-ries[J]. Advanced Materials, 2019, 31(10): 1807243/1-7.
    [10]
    WANG M J, CHOUDHURY R, SAKAMOTO J. Characte-rizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density[J]. Joule, 2019, 3(9): 2165-2178. doi: 10.1016/j.joule.2019.06.017
    [11]
    ZHANG S, WANG D, XU X, et al. Spatially hierarchical carbon enables superior long-term cycling of ultrahigh areal capacity lithium metal anodes[J]. Matter, 2022, 5(4): 1263-1276. doi: 10.1016/j.matt.2022.01.017
    [12]
    HUANG H, LIU Z, LIANG C, et al. Age softening phenomenon and microscopic mechanism of Li-B alloy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9): 2491-2501. doi: 10.1016/S1003-6326(20)65395-X
    [13]
    CHENG E J, SHARAFI A, SAKAMOTO J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte[J]. Electrochimica Acta, 2017, 223: 85-91. doi: 10.1016/j.electacta.2016.12.018
    [14]
    KASEMCHAINAN J, ZEKOLL S, SPENCER JOLLY D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nature Materials, 2019, 18(10): 1105-1111. doi: 10.1038/s41563-019-0438-9
    [15]
    SUN Y, LIU N, CUI Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1(7): 16071/1-12.
    [16]
    LEWIS J A, LEE C, LIU Y, et al. Role of areal capacity in determining short circuiting of sulfide-based solid-state batteries[J]. ACS Appl Mater Interfaces, 2022, 14(3): 4051-4060. doi: 10.1021/acsami.1c20139
    [17]
    黄钊文, 李亚军, 肖文平, 等. 锂离子电池核型G@Cu0.85Sn0.15@负极材料的改性[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201703006.htm

    HUANG Z W, LI Y J, XIAO W P, et al. Modification of core-shell G@Cu0.85Sn0.15@C anode materials for lithium ion batteries[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(3): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201703006.htm
    [18]
    ZHANG X, WANG D, QIU X, et al. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation[J]. Nature Communications, 2020, 11(1): 3826/1-9.
    [19]
    HUO H, LUO J, THANGADURAI V, et al. Li2CO3: a cri-tical issue for developing solid garnet batteries[J]. ACS Energy Letters, 2019, 5(1): 252-262.
    [20]
    SHARAFI A, MEYER H M, NANDA J, et al. Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density[J]. Journal of Power Sources, 2016, 302: 135-139.
  • Cited by

    Periodical cited type(3)

    1. 郭肖勇,严玮演,李勇进,常淑敏. 面向MCU的轻量化极限学习机和锂电池健康状态估计. 华南师范大学学报(自然科学版). 2024(06): 44-50 .
    2. 史永胜,翟欣然,胡玙珺. 基于机器学习的钠离子电池剩余使用寿命预测. 华南师范大学学报(自然科学版). 2023(03): 17-24 .
    3. 赵志刚,韦雪梅,赵华丽,聂海英. 酸碱滴定法测定硼粉中硼. 化学分析计量. 2023(12): 37-42 .

    Other cited types(0)

Catalog

    Article views (966) PDF downloads (47) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return