• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
XIE Yue, QIN Xuefang, SHAO Zhigang, HU Liangbin. Optical Properties of Stone-Wales Graphene Based on First-principles Calculations[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 13-17. DOI: 10.6054/j.jscnun.2022020
Citation: XIE Yue, QIN Xuefang, SHAO Zhigang, HU Liangbin. Optical Properties of Stone-Wales Graphene Based on First-principles Calculations[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 13-17. DOI: 10.6054/j.jscnun.2022020

Optical Properties of Stone-Wales Graphene Based on First-principles Calculations

More Information
  • Received Date: October 19, 2021
  • Available Online: May 11, 2022
  • The optical properties of a new two-dimensional (2D) material Stone-Wales (SW) graphene are investigated with first-principles calculations based on the density functional theory. The optical properties of SW graphene are analyzed in detail from the aspects of reflection, absorption and dielectric function. The results show that the optical properties of the 2D Dirac carbon material display strong anisotropy under different types of polarized light. The real part of the dielectric function indicates that its static dielectric constant is large, which indicates that the material has many usable free carriers, so it has excellent conductivity and can be used as a candidate material for a new generation of nanoelectronic devices. In addition, both the reflection and absorption spectra indicate that SW graphene has a relatively sensitive optical response in the overall optical region, which indicates that its use is very promising in the field of optoelectronic devices.
  • [1]
    PEIERLS R E. Quelques proprietes typiques des corpses solides[J]. Annales Henri Poincare, 1935, 5: 177-222.
    [2]
    LANDAU L D. Zur Theorie der phasenumwandlungen Ⅱ[J]. Physikalische Zeitschrift der Sowjetunion, 1937, 11: 26-35.
    [3]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669. doi: 10.1126/science.1102896
    [4]
    CASTRO NETO A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81: 109-162. doi: 10.1103/RevModPhys.81.109
    [5]
    ZHANG Y, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438: 201-204. doi: 10.1038/nature04235
    [6]
    BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146: 351-355. doi: 10.1016/j.ssc.2008.02.024
    [7]
    WALLACE P R. The band theory of graphite[J]. Physical Review, 1947, 71: 622-634. doi: 10.1103/PhysRev.71.622
    [8]
    MALKO D, NEISS C, VINES F, et al. Competition for graphene: graphynes with direction-dependent dirac cones[J]. Physical Review Letters, 2012, 108: 086804/1-4.
    [9]
    张灿鹏, 邵志刚. CO2和CO分子在五边形石墨烯表面的吸附行为[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003

    ZHANG C P, SHAO Z G. The adsorption behavior of CO2 and CO on penta-graphene[J]. Journal of South China normal University(Natural Science Edition), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003
    [10]
    OUYANG F, PENG S, LIU Z, et al. Bandgap opening in graphene antidot lattices: the missing half[J]. ACS Nano, 2011, 5: 4023-4030. doi: 10.1021/nn200580w
    [11]
    WANG J, HUANG H, DUAN W, et al. Identifying Dirac cones in carbon allotropes with square symmetry[J]. The Journal of Chemical Physics, 2013, 139: 184701/1-6.
    [12]
    YIN H C, SHI X, HE C, et al. Stone-Wales graphene: a two-dimensional carbon semimetal with magic stability[J]. Physical Review B, 2019, 99: 041405/1-5.
    [13]
    BETTINGER H F, YAKOBSON B I, SCUSERIA G E. Scratching the surface of buckminsterfullerene: the barriers for Stone-Wales transformation through symmetric and asymmetric transition states[J]. Journal of the American Chemical Society, 2003, 125: 5572-5580. doi: 10.1021/ja0288744
    [14]
    PENG X, AHUJA R. Symmetry breaking induced bandgap in epitaxial graphene layers on SiC[J]. Nano Letters, 2008, 8: 4464-4468. doi: 10.1021/nl802409q
    [15]
    JIN M, JIAO N, DA H X, et al. Anisotropic optical properties of graphene/graphane superlattices[J]. Solid State Sciences, 2015, 40: 71-76. doi: 10.1016/j.solidstatesciences.2014.12.018
    [16]
    CHEN X, MENG R, JIANG J, et al. Electronic structure and optical properties of graphene/stanene heterobilayer[J]. Physical Chemistry Chemical Physics, 2016, 18: 16302-16309. doi: 10.1039/C6CP02424F
    [17]
    邵志刚, 李白. 新型二维碳材料net-Y光学性质的第一性原理研究[J]. 华南师范大学学报(自然科学版), 2019, 51(6): 1-6. doi: 10.6054/j.jscnun.2019096

    SHAO Z G, LI B. A first-principles study on the optical properties of a novel two-dimensional carbon material net-Y[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(6): 1-6. doi: 10.6054/j.jscnun.2019096
    [18]
    WOOTEN F. Optical properties of solids[J]. American Journal of Physics, 1973, 41: 939-940. doi: 10.1119/1.1987434
    [19]
    DRESSEL M, GRÜNER G. Electrodynamics of solids: optical properties of electrons in matter[M]. Cambridge: Cambridge University Press, 2002, 70: 1269-1276.
    [20]
    SHAO Z G, SUN Z L. Optical properties of α-, β-, γ-, and 6, 6, 12-graphyne structures: first-principle calculations[J]. Physica E: Low-dimensional Systems and Nanostructures, 2015, 74: 438-442. doi: 10.1016/j.physe.2015.07.011
    [21]
    KUMAR J S, SRIVASTAVA P. Optical properties of hexagonal boron nanotubes by first-principles calculations[J]. Journal of Applied Physics, 2013, 114: 073514/1-9.

Catalog

    Article views (547) PDF downloads (158) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return