Citation: | WU Shanhe, HUANG Xianyong, YANG Bicheng. A Half-discrete Hardy-Mulholland-type Inequality Involving One Multiple Upper Limit Function[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 100-106. DOI: 10.6054/j.jscnun.2022014 |
[1] |
HARDY G H, LITTLEWOOD J E, POLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1934.
|
[2] |
KRNIC M, PECARIC J. Extension of Hilbert's inequality[J]. Journal of Mathematical Analysis and Applications, 2006, 324(1): 150-160. doi: 10.1016/j.jmaa.2005.11.069
|
[3] |
杨必成. 关于Hilbert重级数定理的一个推广[J]. 南京大学学报数学半年刊, 2001, 18(1): 145-152.
YANG B C. On a generalization of Hilbert double series theorem[J]. Journal of Nanjing University Mathematical Biquarterly, 2001, 18(1): 145-152.
|
[4] |
ADIYASUREN V, BATBOLD T, AZAR L E. A new discrete Hilbert-type inequality involving partial sums[J]. Journal of Inequalities and Applications, 2019, 2019: 127/1-7. doi: 10.1186/s13660-019-2087-6
|
[5] |
杨必成. 算子范数与Hilbert型不等式[M]. 北京: 科学出版社, 2009.
|
[6] |
KRNIC M, PECARIC J. General Hilbert's and Hardy's inequalities[J]. Mathematical Inequalities Applications, 2005, 8(1): 29-51.
|
[7] |
PERIC I, VUKOVIC P. Multiple Hilbert's type inequalities with a homogeneous kernel[J]. Banach Journal of Mathematical Analysis, 2011, 5(2): 33-43. doi: 10.15352/bjma/1313363000
|
[8] |
HE B, WANG Q. A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor[J]. Journal of Mathematical Analysis and Applications, 2015, 431(2): 889-902. doi: 10.1016/j.jmaa.2015.06.019
|
[9] |
XU J S. Hardy-Hilbert's inequalities with two parameters[J]. Advances in Mathematics, 2007, 36(2): 63-76.
|
[10] |
XIE Z T, ZENG Z, SUN Y F. A new Hilbert-type inequality with the homogeneous kernel of degree -2[J]. Advances and Applications in Mathematical Sciences, 2013, 12(7): 391-401.
|
[11] |
ZENG Z, RAJA RAMA GANDHI K, XIE Z T. A new Hilbert-type inequality with the homogeneous kernel of degree-2 and with the integra[J]. Bulletin of Mathematical Sciences and Applications, 2014, 3(1): 11-20.
|
[12] |
ADIYASUREN V, BATBOLD T, KRNIC M. Hilbert-type inequalities involving differential operators, the best constants and applications[J]. Mathematical Inequalities Applications, 2015, 18(1): 111-124. https://www.researchgate.net/publication/271073733_Hilbert-type_inequalities_involving_differential_operators_the_best_constants_and_applications
|
[13] |
黄启亮, 杨必成, 王爱珍. 一般齐次核Hardy-Mulholland型不等式[J]. 浙江大学学报(理学版), 2020, 47(3): 306-311.
HUANG Q L, YANG B C, WANG A Z. A Hardy-Mulholland-type inequality with the general homogeneous kernel[J]. Journal of Zhejiang University(Science Edition), 2020, 47(3): 306-311.
|
[14] |
RASSIAS M TH, YANG B C. On half-discrete Hilbert's inequality[J]. Applied Mathematics and Computation, 2013, 220: 75-93. doi: 10.1016/j.amc.2013.06.010
|
[15] |
YANG B C, KRNIC M. A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0[J]. Journal of Mathematical Inequalities, 2012, 6(3): 401-417. http://files.ele-math.com/abstracts/jmi-06-38-abs.pdf
|
[16] |
RASSIAS M TH, YANG B C. A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function[J]. Applied Mathematics and Computation, 2013, 225: 263-277. doi: 10.1016/j.amc.2013.09.040
|
[17] |
RASSIAS M TH, YANG B C. On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function[J]. Applied Mathematics and Computation, 2013, 242: 800-813. https://www.sciencedirect.com/science/article/pii/S0096300314008996
|
[18] |
YANG B C, DEBNATH L. Half-discrete Hilbert-type inequalities[M]. Singapore: World Scientific Publishing, 2014.
|
[19] |
洪勇, 温雅敏. 齐次核Hilbert型不等式取最佳常数因子的充要条件[J]. 数学年刊: A辑, 2016, 37(3): 329-336.
HONG Y, WEN Y M. A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor[J]. Chinese Annals of Mathematics: Series A, 2016, 37(3): 329-336.
|
[20] |
洪勇. 具有齐次核的Hilbert型积分不等式的构造特征及应用[J]. 吉林大学学报(理学版), 2017, 55(2): 189-194.
HONG Y. On the structure character of Hilbert's type integral inequality with homogeneous kernel and applications[J]. Journal of Jilin University (Science Edition), 2017, 55(2): 189-194.
|
[21] |
HONG Y, HUANG Q L, YANG B C, et al. The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non-homogeneous kernel and its applications[J]. Journal of Inequalities and Applications, 2017, 2017: 316/1-13. doi: 10.1186/s13660-017-1592-8
|
[22] |
XIN D M, YANG B C, WANG A Z. Equivalent property of a Hilbert-type integral inequality related to the beta function in the whole plane[J]. Journal of Function Spaces, 2018, 2018: 2691816/1-8.
|
[23] |
HONG Y, HE B, YANG B C. Necessary and sufficient conditions for the validity of Hilbert type integral inequalities with a class of quasi-homogeneous kernels and its application in operator theory[J]. Journal of Mathematics Inequalities, 2018, 12(3): 777-788. http://files.ele-math.com/abstracts/jmi-12-59-abs.pdf
|
[24] |
HUANG Z X, YANG B C. Equivalent property of a half-discrete Hilbert's inequality with parameters[J]. Journal of Inequalities and Applications, 2018, 2018: 333/1-12. doi: 10.1186/s13660-018-1926-1
|
[25] |
WANG A Z, YANG B C, CHEN Q. Equivalent properties of a reverse's half-discret Hilbert's inequality[J]. Journal of Inequalities and Applications, 2019, 2019: 279/1-13. doi: 10.1186/s13660-019-2236-y
|
[26] |
YANG B C, WU S H, LIAO J Q. On a new extended Hardy-Hilbert's inequality with parameters[J]. Mathema-tics, 2020, 8(1): 1-12.
|
[27] |
YANG B C, WU S H, WANG A Z. On a reverse half-discrete Hardy-Hilbert's inequality with parameters[J]. Mathematics, 2019, 7(11): 1-12.
|
[28] |
HUANG X Y, WU S H, YANG B C. A more accurate half-discrete Hilbert-type inequality involving one upper limit function and one partial sum[J]. Symmetry, 2021, 13(8): 1-13.
|
[29] |
匡继昌. 常用不等式[M]. 济南: 山东科学技术出版社, 2004.
|
[30] |
匡继昌. 实分析与泛函分析(续论, 上册)[M]. 北京: 高等教育出版社, 2015.
|