• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WU Shanhe, HUANG Xianyong, YANG Bicheng. A Half-discrete Hardy-Mulholland-type Inequality Involving One Multiple Upper Limit Function[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 100-106. DOI: 10.6054/j.jscnun.2022014
Citation: WU Shanhe, HUANG Xianyong, YANG Bicheng. A Half-discrete Hardy-Mulholland-type Inequality Involving One Multiple Upper Limit Function[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 100-106. DOI: 10.6054/j.jscnun.2022014

A Half-discrete Hardy-Mulholland-type Inequality Involving One Multiple Upper Limit Function

More Information
  • Received Date: July 30, 2021
  • Available Online: March 13, 2022
  • By constructing the kernel function and weight function and using the real analytical techniques, the half-discrete inequalities of Hardy-Mulholland type are investigated. Firstly, a half-discrete Hardy-Mulholland-type inequality containing several parameters and one multiple upper limit function is established. And then, the equivalent statements on the best possible constant factor associated with several parameters are discussed with the aid of the proposed half-discrete Hardy-Mulholland-type inequality, and several inequalities are derived via their equivalent form. The results obtained can be used to depict the structure character of Hardy-Mulholland-type inequalities for which the constant factors are best possible.
  • [1]
    HARDY G H, LITTLEWOOD J E, POLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1934.
    [2]
    KRNIC M, PECARIC J. Extension of Hilbert's inequality[J]. Journal of Mathematical Analysis and Applications, 2006, 324(1): 150-160. doi: 10.1016/j.jmaa.2005.11.069
    [3]
    杨必成. 关于Hilbert重级数定理的一个推广[J]. 南京大学学报数学半年刊, 2001, 18(1): 145-152.

    YANG B C. On a generalization of Hilbert double series theorem[J]. Journal of Nanjing University Mathematical Biquarterly, 2001, 18(1): 145-152.
    [4]
    ADIYASUREN V, BATBOLD T, AZAR L E. A new discrete Hilbert-type inequality involving partial sums[J]. Journal of Inequalities and Applications, 2019, 2019: 127/1-7. doi: 10.1186/s13660-019-2087-6
    [5]
    杨必成. 算子范数与Hilbert型不等式[M]. 北京: 科学出版社, 2009.
    [6]
    KRNIC M, PECARIC J. General Hilbert's and Hardy's inequalities[J]. Mathematical Inequalities Applications, 2005, 8(1): 29-51.
    [7]
    PERIC I, VUKOVIC P. Multiple Hilbert's type inequalities with a homogeneous kernel[J]. Banach Journal of Mathematical Analysis, 2011, 5(2): 33-43. doi: 10.15352/bjma/1313363000
    [8]
    HE B, WANG Q. A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor[J]. Journal of Mathematical Analysis and Applications, 2015, 431(2): 889-902. doi: 10.1016/j.jmaa.2015.06.019
    [9]
    XU J S. Hardy-Hilbert's inequalities with two parameters[J]. Advances in Mathematics, 2007, 36(2): 63-76.
    [10]
    XIE Z T, ZENG Z, SUN Y F. A new Hilbert-type inequality with the homogeneous kernel of degree -2[J]. Advances and Applications in Mathematical Sciences, 2013, 12(7): 391-401.
    [11]
    ZENG Z, RAJA RAMA GANDHI K, XIE Z T. A new Hilbert-type inequality with the homogeneous kernel of degree-2 and with the integra[J]. Bulletin of Mathematical Sciences and Applications, 2014, 3(1): 11-20.
    [12]
    ADIYASUREN V, BATBOLD T, KRNIC M. Hilbert-type inequalities involving differential operators, the best constants and applications[J]. Mathematical Inequalities Applications, 2015, 18(1): 111-124. https://www.researchgate.net/publication/271073733_Hilbert-type_inequalities_involving_differential_operators_the_best_constants_and_applications
    [13]
    黄启亮, 杨必成, 王爱珍. 一般齐次核Hardy-Mulholland型不等式[J]. 浙江大学学报(理学版), 2020, 47(3): 306-311.

    HUANG Q L, YANG B C, WANG A Z. A Hardy-Mulholland-type inequality with the general homogeneous kernel[J]. Journal of Zhejiang University(Science Edition), 2020, 47(3): 306-311.
    [14]
    RASSIAS M TH, YANG B C. On half-discrete Hilbert's inequality[J]. Applied Mathematics and Computation, 2013, 220: 75-93. doi: 10.1016/j.amc.2013.06.010
    [15]
    YANG B C, KRNIC M. A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0[J]. Journal of Mathematical Inequalities, 2012, 6(3): 401-417. http://files.ele-math.com/abstracts/jmi-06-38-abs.pdf
    [16]
    RASSIAS M TH, YANG B C. A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function[J]. Applied Mathematics and Computation, 2013, 225: 263-277. doi: 10.1016/j.amc.2013.09.040
    [17]
    RASSIAS M TH, YANG B C. On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function[J]. Applied Mathematics and Computation, 2013, 242: 800-813. https://www.sciencedirect.com/science/article/pii/S0096300314008996
    [18]
    YANG B C, DEBNATH L. Half-discrete Hilbert-type inequalities[M]. Singapore: World Scientific Publishing, 2014.
    [19]
    洪勇, 温雅敏. 齐次核Hilbert型不等式取最佳常数因子的充要条件[J]. 数学年刊: A辑, 2016, 37(3): 329-336.

    HONG Y, WEN Y M. A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor[J]. Chinese Annals of Mathematics: Series A, 2016, 37(3): 329-336.
    [20]
    洪勇. 具有齐次核的Hilbert型积分不等式的构造特征及应用[J]. 吉林大学学报(理学版), 2017, 55(2): 189-194.

    HONG Y. On the structure character of Hilbert's type integral inequality with homogeneous kernel and applications[J]. Journal of Jilin University (Science Edition), 2017, 55(2): 189-194.
    [21]
    HONG Y, HUANG Q L, YANG B C, et al. The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non-homogeneous kernel and its applications[J]. Journal of Inequalities and Applications, 2017, 2017: 316/1-13. doi: 10.1186/s13660-017-1592-8
    [22]
    XIN D M, YANG B C, WANG A Z. Equivalent property of a Hilbert-type integral inequality related to the beta function in the whole plane[J]. Journal of Function Spaces, 2018, 2018: 2691816/1-8.
    [23]
    HONG Y, HE B, YANG B C. Necessary and sufficient conditions for the validity of Hilbert type integral inequalities with a class of quasi-homogeneous kernels and its application in operator theory[J]. Journal of Mathematics Inequalities, 2018, 12(3): 777-788. http://files.ele-math.com/abstracts/jmi-12-59-abs.pdf
    [24]
    HUANG Z X, YANG B C. Equivalent property of a half-discrete Hilbert's inequality with parameters[J]. Journal of Inequalities and Applications, 2018, 2018: 333/1-12. doi: 10.1186/s13660-018-1926-1
    [25]
    WANG A Z, YANG B C, CHEN Q. Equivalent properties of a reverse's half-discret Hilbert's inequality[J]. Journal of Inequalities and Applications, 2019, 2019: 279/1-13. doi: 10.1186/s13660-019-2236-y
    [26]
    YANG B C, WU S H, LIAO J Q. On a new extended Hardy-Hilbert's inequality with parameters[J]. Mathema-tics, 2020, 8(1): 1-12.
    [27]
    YANG B C, WU S H, WANG A Z. On a reverse half-discrete Hardy-Hilbert's inequality with parameters[J]. Mathematics, 2019, 7(11): 1-12.
    [28]
    HUANG X Y, WU S H, YANG B C. A more accurate half-discrete Hilbert-type inequality involving one upper limit function and one partial sum[J]. Symmetry, 2021, 13(8): 1-13.
    [29]
    匡继昌. 常用不等式[M]. 济南: 山东科学技术出版社, 2004.
    [30]
    匡继昌. 实分析与泛函分析(续论, 上册)[M]. 北京: 高等教育出版社, 2015.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return